

 �

Data Warehouses and OLAP:
Concepts, Architectures

and Solutions

Robert Wrembel
Poznań University of Technology, Poland

Christian Koncilia
Panoratio GmbH, Germany

IRM Press
Publisher of innovative scholarly and professional infor-

mation technology titles in the cyberage

Hershey • London • Melbourne • Singapore

�� 	

Acquisitions	Editor:	 	 Kristin	Klinger
Development	Editor:	 	 Kristin	Roth
Senior	Managing	Editor:		 Jennifer	Neidig
Managing	Editor:	 	 Sara	Reed
Assistant	Managing	Editor:	 Sharon	Berger
Copy	Editor:	 	 April	Schmidt
Typesetter:		 	 Diane	Huskinson
Cover	Design:	 	 Lisa	Tosheff
Printed	at:	 	 	 Integrated	Book	Technology

Published	in	the	United	States	of	America	by	
IRM	Press	(an	imprint	of	Idea	Group	Inc.)
701	E.	Chocolate	Avenue,	Suite	200
Hershey	PA	17033-1240
Tel:	717-533-8845
Fax:		717-533-8661
E-mail:	cust@idea-group.com
Web	site:	http://www.irm-press.com

and	in	the	United	Kingdom	by
IRM	Press		(an	imprint	of	Idea	Group	Inc.)
3	Henrietta	Street
Covent	Garden
London	WC2E	8LU
Tel:	44	20	7240	0856
Fax:		44	20	7379	0609
Web	site:	http://www.eurospanonline.com

Copyright	©	2007	by	Idea	Group	Inc.		All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	or	
distributed	in	any	form	or	by	any	means,	electronic	or	mechanical,	including	photocopying,	without	written	
permission	from	the	publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the names of the
products	or	companies	does	not	indicate	a	claim	of	ownership	by	IGI	of	the	trademark	or	registered	trademark.

Library	of	Congress	Cataloging-in-Publication	Data

Data	warehouses	and	OLAP	:	concepts,	architectures,	and	solutions	/	Robert	Wrembel	and	Christian	Koncilia,	
editors.
							p.	cm.
		Summary:	“This	book	provides	an	insight	into	important	research	and	technological	problems,	solutions,	and	
development trends in the field of data warehousing and OLAP. It also serves as an up-to-date bibliography of
published	works	for	anyone	interested	in	cutting-edge	DW	and	OLAP	issues”--Provided	by	publisher.
		Includes	bibliographical	references	and	index.
		ISBN	1-59904-364-5	(hardcover)	--	ISBN	1-59904-365-3	(softcover)	--	ISBN	1-59904-366-1	(ebook)
	1.		Data	warehousing.	2.		OLAP	technology.		I.	Wrembel,	Robert.	II.	Koncilia,	Christian,	1969-	
		QA76.9.D37D392	2007
		005.74--dc22
																																																												2006027721British	Cataloguing	in	Publication	Data

A	Cataloguing	in	Publication	record	for	this	book	is	available	from	the	British	Library.

All	work	contributed	to	this	book	is	new,	previously-unpublished	material.	The	views	expressed	in	this	book	are	
those	of	the	authors,	but	not	necessarily	of	the	publisher.	

 iii

Data Warehouses and OLAP:
Concepts, Architectures

and Solutions

Table of Contents

Foreword... vi

Preface... viii

Section.I:.Modeling.and.Designing

Chapter.I
Conceptual.Modeling.Solutions.for.the.Data.Warehouse............................. 1
	 Stefano Rizzi, DEIS-University of Bologna, Italy

Chapter.II
Handling.Structural.Heterogeneity.in.OLAP... 27
	 Carlos A. Hurtado, Universidad de Chile, Chile
 Claudio Gutierrez, Universidad de Chile, Chile

Chapter.III
Data.Quality-Based.Requirements.Elicitation.for.Decision.Support.
Systems... 58	 	
	 Alejandro Vaisman, Universidad de Buenos Aires, Argentina

iv

Section.II:.Loading.and.Refreshing

Chapter.IV
Extraction,.Transformation,.and.Loading.Processes.................................. 88	 	
	 Jovanka Adzic, Telecom Italia, Italy
 Valter Fiore, Telecom Italia, Italy
 Luisella Sisto, Telecom Italia, Italy

Chapter.V
Data.Warehouse.Refreshment..111
	 Alkis Simitsis, National Technical University of Athens, Greece
 Panos Vassiliadis, University of Ioannina, Greece
 Spiros Skiadopoulos, University of Peloponnese, Greece
 Timos Sellis, National Technical University of Athens, Greece

Section III: Efficiency of Analytical Processing

Chapter.VI
Advanced.Ad.Hoc.Star.Query.Processing.. 136
	 Nikos Karayannidis, National Technical University of Athens,
 Greece
 Aris Tsois, National Technical University of Athens, Greece
 Timos Sellis, National Technical University of Athens, Greece

Chapter.VII
Bitmap.Indices.for.Data.Warehouses.. 157
	 Kurt Stockinger, Lawrence Berkeley National Laboratory,
 University of California, USA
 Kesheng Wu, Lawrence Berkeley National Laboratory,
 University of California, USA

Chapter.VIII
Indexing.in.Data.Warehouses:.Bitmaps.and.Beyond................................ 179
	 Karen C. Davis, University of Cincinnati, USA
 Ashima Gupta, University of Cincinnati, USA

Chapter.IX
Efficient and Robust Node-Partitioned Data Warehouses........................ 203
	 Pedro Furtado, Universidade de Coimbra, Portugal

Chapter.X
OLAP with a Database Cluster.. 230
	 Uwe Röhm, University of Sydney, Australia

 v

Chapter.XI
Toward.Integrating.Data.Warehousing.with.Data.Mining.Techniques... 253
	 Rokia Missaoui, Université du Québec en Outaouais, Canada
 Ganaël Jatteau, Université du Québec en Outaouais, Canada
 Ameur Boujenoui, University of Ottawa, Canada
 Sami Naouali, Université du Québec en Outaouais, Canada

Chapter.XII
Temporal.Semistructured.Data.Models.and.Data.Warehouses................ 277
	 Carlo Combi, University of Verona, Italy
 Barbara Oliboni, University of Verona, Italy

Chapter.XIII
Spatial.Online.Analytical.Processing.(SOLAP):.Concepts,.Architectures,.
and.Solutions.from.a.Geomatics.Engineering.Perspective....................... 298
	 Yvan Bédard, Laval University, Canada
 Sonia Rivest, Laval University, Canada
 Marie-Josée Proulx, Laval University, Canada

About the Editors.. 320

About the Authors... 321

Index.. 328
	

vi

Foreword

Data	warehouse	systems	have	become	a	key	component	of	the	corporate	informa-
tion	 system	architecture,	 in	which	 they	play	 a	 crucial	 role	 in	 building	 business	
decision	support	systems.	By	collecting	and	consolidating	data	from	a	variety	of	
enterprise	internal	and	external	sources,	data	warehouses	try	to	provide	a	homo-
geneous	information	basis	for	enterprise	planning	and	decision	making.	We	have	
recently	witnessed	a	rapid	growth	both	in	the	number	of	data	warehousing	products	
and	services	offered	as	well	as	in	the	acceptance	of	these	technologies	by	industry.	
Within	recent	years,	data	warehouses	have	faced	a	tremendous	shift	from	simple	
centralized	repositories	used	to	store	cash-register	transactions	to	a	platform	for	data	
integration,	federation,	and	sophisticated	data	analysis.	Nowadays,	data	warehousing	
technologies	are	successfully	used	in	many	industries	including	retail,	manufactur-
ing, financial services, banking, telecommunication, healthcare, and so forth.
Data warehousing technology is currently a very active field of research. Research
problems	associated	with	creating,	maintaining,	and	using	data	warehouse	technology	
are partially similar to those specific for database systems. In fact, a data warehouse
can	be	considered	as	“large”	database	system	with	additional	functionality.	However,	
the	well-known	problems	of	index	selection,	data	partitioning,	materialized	view	
maintenance,	data	integration,	query	optimization,	have	received	renewed	attention	
in warehousing research. Some research problems are specific to data warehousing:
data	acquisition	and	data	cleaning,	data	warehouse	refreshment,	evolution	of	data	
warehouse	schema,	multidimensional	and	parallel	query	optimization,	conceptual	
modeling	 for	 the	data	warehouses,	data	quality	management,	and	so	 forth.	This	
book	addresses	all	the	above	mentioned	issues	in	the	area	of	data	warehousing	from	
multiple	perspectives,	in	the	form	of	individual	contributions	written	by	prominent	
data	warehouse	technology	researchers,	and	it	also	outlines	new	trends	and	future	
challenges	in	the	context	of	next	generation	data	warehouse	systems.

 vii

In reading the book, I was impressed by how much the field of data warehousing has
advanced	and	matured.	The	book	describes	different	aspects	of	data	warehousing	
technology	and	gives	an	insight	into	important	research,	technological,	and	practical	
problems	and	solutions	related	to	the	data	warehousing	technology.	The	content	of	
the	book	covers	fundamental	aspects	of	data	warehousing	technology	such	as	the	
conceptual	modeling	and	design	of	data	warehouse	systems,	data	warehouse	refresh-
ment,	query	optimization,	indexes,	integration	of	the	data	warehouse	technology	
with data mining techniques, and, finally, new trends in data warehousing such as
temporal	semistructured	data	models	and	spatial	online	analytical	processing.
I	am	pleased	to	recommend	this	book	to	the	readers.	If	you	are	a	researcher,	a	data	
warehouse	developer,	or	just	a	keen	reader	wishing	to	understand	important	aspects	
of data warehouses and their potential, you will find that this book provides both
a	 solid	 technical	 background	 and	 state-of-the-art	 knowledge	on	 this	 interesting	
and	important	topic.	The	book	is	a	valuable	source	of	information	for	academics	
and practitioners who are interested in learning the key ideas in the field of data
warehousing. This book is likely to become a standard reference in the field of data
warehousing	for	many	years.	

Tadeusz Morzy
Poznań University of Technology, Poland
June 2006

viii

Preface

Nowadays	the	economy	is	characterized	by	fast	and	continuously	changing	markets	
and	business	opportunities.	Therefore,	in	order	to	be	successful,	it	is	essential	for	
an	enterprise	 to	make	 right	business	decisions	and	 to	make	 them	fast.	Business	
decisions	are	taken	on	the	basis	of	analyses	of	the	past	and	current	condition	of	
an	enterprise	as	well	as	market	analysis	and	predictions	for	the	future.	To	this	end,	
various	business	operational	data	collected	during	the	lifetime	of	an	enterprise	are	
analyzed.	Typically,	operational	data	are	stored	within	an	enterprise	in	multiple	data	
storage	systems	(subsystems)	that	are	geographically	distributed,	are	heterogeneous	
and	autonomous.	
The	heterogeneity	of	data	storage	systems	means	 that	 they	come	from	different	
software	vendors;	they	are	implemented	in	different	technologies	(e.g.,	C,	C++,	.Net,	
Java,	4th	generation	programming	languages);	they	offer	different	functionality	(e.g.,	
fully-functional databases, ODBC data sources, spreadsheets, Web pages, text files);
they	use	different	data	models	(e.g.,	relational,	object-relational,	object-oriented,	
semistructured)	 and	different	 storage	 techniques;	 they	 are	 installed	on	different	
operating	systems	and	use	different	communication	protocols.
The	autonomy	of	data	storage	systems	implies	that	they	are	often	independent	from	
each	other	and	remain	under	separate,	independent	control;	that	is,	a	local	system’s	
administrator	can	decide	which	local	data	are	to	be	accessible	from	the	outside	of	
the	system.
The	management	of	an	enterprise	requires	a	comprehensive	view	of	all	aspects	of	
a	company,	thus	it	requires	access	to	all	possible	data	of	interest	stored	in	multiple	
subsystems.	However,	an	analysis	of	data	stored	in	distributed,	heterogeneous,	and	
autonomous subsystems is likely to be difficult, slow, and inefficient. Therefore, the
ability	to	integrate	information	from	multiple	data	sources	is	crucial	for	today’s	busi-
ness.

 �x

Data.Warehouse.and.OLAP

One	of	the	most	important	approaches	to	the	integration	of	data	sources	is	based	
on	a	data warehouse architecture.	In	this	architecture,	data	coming	from	multiple	
external data sources (EDSs) are extracted, filtered, merged, and stored in a central
repository,	called	a	data	warehouse (DW).	Data	are	also	enriched	by	historical	and	
summary	information.	From	a	technological	point	of	view,	a	data	warehouse	is	a	
huge	database	from	several	hundred	GB	to	several	dozens	of	TB.	Thanks	to	this	
architecture,	users	operate	on	a	local,	homogeneous,	and	centralized	data	repository	
that	reduces	access	time	to	data.	Moreover,	a	data	warehouse	is	independent	of	EDSs	
that	may	be	temporarily		unavailable.	However,	a	data	warehouse	has	to	be	kept	up	
to	date	with	respect	to	the	content	of	EDSs,	by	being	periodically	refreshed.
The	 content	 of	 a	DW	 is	 analyzed	by	 the	 so	 called	online	 analytical	 processing	
(OLAP)	applications	for	the	purpose	of	discovering	trends,	patterns	of	behavior,	and	
anomalies as well as for finding hidden dependencies between data. The outcomes
of	 these	analyses	are	 then	 the	basis	 for	making	various	business	decisions.	The	
market	analysis	of	demand	and	supply	is	one	of	important	steps	in	taking	strategic	
decisions	in	a	company.	Likewise,	an	analysis	of	the	development	and	course	of	
diseases	as	well	as	the	impact	of	different	medications	on	the	course	of	illnesses	
is indispensable in order to choose the most efficient methods of treatment. Many
other	applications	include,	among	others:	stock	market,	banking,	insurance,	energy	
management,	and	science.	Data	warehouses	and	OLAP	applications	are	core	com-
ponents	of	decision	support	systems.
Since	the	late	1980s,	when	the	data	warehouse	technology	developed,	most	of	large	
and	midsize	companies	worldwide	have	been	building	their	own	DWs	into	their	
information	system	infrastructures	and	have	been	successfully	applying	this	tech-
nology	in	business.	Major	commercially	available	database	management	systems	
(e.g.,	Oracle9i/10g,	IBM	DB2	UDB,	Sybase	IQ,	Computer	Associates	CleverPath	
OLAP,	NCR	Teradata	Database,	Hyperion	Essbase	OLAP	Server,	MS	SQL	Server,	
SAP	Business	Warehouse,	SAS	Enterprise	BI	Server)	include	the	DW	and	OLAP	
technologies	in	their	database	engines.	However,	despite	some	substantial	achieve-
ments	in	this	technology,	it	still	is	and	will	be	a	very	active	research	and	technologi-
cal field. The OLAPReport (2004) estimates that the total worldwide OLAP market
constantly	grew	from	less	than	$1	billion	in	1994	to	less	than	$5	billion	in	2005,	
and	it	will	grow	up	to	$6	billion	in	2007.	The	META	Group’s	(currently	Gartner)	
survey	estimates	that	the	OLAP	market	will	be	worth	almost	$10	billion	in	2008	
(EDWMarket,	2004).	For	these	reasons,	it	is	important	to	understand	the	core	tech-
nological issues and challenges in the field of DW and OLAP.

x

Technological. and.Research.Challenges

The	size	of	a	DW,	high	complexity	of	OLAP	queries	as	well	as	the	heterogeneous	
nature	of	integrated	data	pose	serious	research	and	technological	challenges.	In-
tensive research is conducted in several fields, that include, among others: schema
design	methodology	and	implementation	models,	data	loading	and	DW	refreshing	
techniques, efficient query processing, metadata management, and data quality is-
sues	(cf.	Nguyen,	Tjoa,	&	Trujillo,	2005).
A	DW	is	designed	for	quick	data	retrieval	by	ad-hoc	queries.	These	queries	often	
compute	aggregates	based	on	other	aggregates	by	rolling	them	up	or	they	analyze	
details	by	drilling	the	aggregates	down.	Moreover,	data	are	analyzed	in	the	context	
of	other	data,	for	example,	the	monthly	sales	of	products	by	particular	shops.	In	order	
to	support	such	kinds	of	analytical	queries,	a	DW	typically	uses	a	multidimensional	
data	model	(Gyssens	&	Lakshmanan,	1997).	In	this	model,	facts	representing	el-
ementary	data	being	the	subject	of	analysis	are	organized	in	n-dimensional	spaces,	
called	data	cubes.
An	n-dimensional	data	cube	can	be	implemented	either	in	MOLAP	servers	or	in	
ROLAP	servers.	In	the	former	case,	a	cube	is	stored	either	in	a	multidimensional	
array	or	in	a	hash	table	(e.g.,	SQL	Server)	or	as	the	value	of	a	binary	large	object	
(e.g.,	Oracle)	or	as	another	specialized	data	structure	like	Quad	tree	or	K-D	tree.	In	
the	latter	case,	a	cube	is	implemented	as	the	set	of	relational	tables,	some	of	them	
represent	dimensions,	and	are	called	dimension	tables,	while	others	store	values	of	
measures,	and	are	called	fact	tables.	Two	basic	types	of	ROLAP	schemas	are	used	
for an implementation of a cube, that is, a star schema and a snowflake schema
(Chaudhuri & Dayal, 1997). The efficiency of executing OLAP queries strongly
depends	on	an	implementation	data	model	and	the	type	of	the	ROLAP	schema	used.	
Therefore,	a	lot	of	work	is	being	spent	on	developing	DW	design	methods	(e.g.,	
Adamson	&	Venerable,	1998;	Kimball,	Reeves,	Ross,	&	Thornthwaite,	1998;	Luján-
Mora	&	Trujillo,	2004)	and	on	modeling	dimensions	(e.g.,	Hurtado	&	Mendelzon,	
2002;	Letz,	Henn	&	Vossen,	2002).
Having	designed	and	implemented	a	DW	one	has	to	load	it	with	data.	The	process	of	
loading	data	into	a	DW	is	organized	into	several	steps	that	include:	(1)	reading	data	
from	data	sources,	(2)	transforming	data	into	a	common	data	model,	(3)	cleansing	
data	in	order	to	remove	inconsistencies,	duplicates,	and	null	values,	(4)	integrating	
cleansed	data	into	one	set,	(5)	computing	summaries,	and	(6)	loading	data	into	a	
DW.	This	process,	called	ETL	(Extraction,	Translation/Transformation,	Loading),	
is	executed	by	a	software	layer	located	between	data	sources	and	a	DW	(Kimball	&	
Caserta,	2004;	Simitsis,	Vassiliadis,	Terrovitis,	&	Skiadopoulos,	2005).	The	software	
includes:	monitors	that	are	responsible	for	detecting	and	reading	changes	in	data	
sources,	wrappers	that	are	responsible	for	transforming	a	source	data	model	into	a	
common	DW	model	as	well	as	an	integrator	that	is	responsible	for	integrating	data,	
cleansing	them	and	loading	them	into	a	DW	(Widom,	1995).

 x�

The	initial	loading	into	an	empty	DW	reads	all	data	of	interest	from	EDSs	and	stores	
them	in	a	DW.	As	the	data	sources	are	operational	systems	that	are	used	everyday,	
their	content	changes	frequently.	As	a	consequence,	the	content	of	a	DW	becomes	
obsolete	and	has	to	be	refreshed.	A	data	warehouse	is	often	implemented	as	the	
collection	of	materialized	views,	thus	the	problem	of	a	DW	refreshing	transforms	
to	the	problem	of	maintaining	and	refreshing	materialized	views.	This	problem	has	
been	extensively	investigated	by	the	research	community	(Gupta	&	Mumick,	1999;	
Roussopoulos,	1998)	and	has	resulted	in	multiple	algorithms	for	refreshing	materi-
alized	views.	Typically,	refreshing	a	materialized	view	is	a	costly	task.	In	order	to	
optimize	it,	multiple	incremental	refreshing	techniques	have	been	proposed.	They	
can	be	categorized	as	refreshing	with	accessing	data	sources	(e.g.,	Ceri	&	Widom,	
1991)	as	well	as	self-maintenable	refreshing	(e.g.,	Samtani,	Kumar,	&	Mohania,	
1999).	In	the	latter	case,	additional	data	structures	are	stored	in	a	DW	along	with	
materialized	views	in	order	to	eliminate	the	need	of	accessing	data	sources.
The	process	of	refreshing	a	materialized	view	is	usually	executed	concurrently	with	
transactions	on	data	sources	and	with	user	analytical	queries.	Such	concurrent	ex-
ecutions	may	result	in	inconsistent	data	stored	in	materialized	views	and	erroneous	
results	of	analytical	queries.	Multiple	solutions	for	avoiding	these	problems	have	
been	developed,	that	is,	recomputing	a	view	from	scratch,	applying	compensation	
algorithms,	maintaining	versions	 of	 views,	 using	 additional	 data	 structures	 and	
transactions	(e.g.,	Gupta	&	Mumick,	1999;	Quass	&	Widom,	1997;	Zhuge,	Garcia-
Molina	&	Wiener,	1996).	Yet	another	problem	is	related	to	maintaining	consistency	
of	multiple	dependent	views	during	the	process	of	their	refreshment	(e.g.,	Colby,	
Kawaguchi,	Lieuwen,	Mumick,	&	Ross,	1997;	Zhuge,	Wiener,	&	Garcia-Molina,	
1997).
OLAP	applications	analyze	data	by	means	of	complex	queries	ranging	from	a	few	
to dozens operations of joining, filtering, grouping, and aggregating. Since these
queries	are	very	complex	and	they	often	read	terabytes	of	data,	their	execution	may	
take	dozens	of	minutes,	hours,	or	even	days.	Therefore,	a	key	issue	is	the	data	ware-
house efficiency. Well developed solutions to this problem are based on materialized
views	and	query	rewriting	as	well	as	on	advanced	index	structures.	
A challenging issue within the first solution concerns the selection of such a set of
materialized	views	that:	(1)	will	be	used	for	optimizing	the	greatest	possible	number	
of	the	most	expensive	queries	and	(2)	whose	maintenance	will	not	be	costly.	Several	
research	works	have	addressed	this	problem	and	they	have	proposed	multiple	algo-
rithms	for	selecting	optimal	sets	of	materialized	views	for	a	given	query	workload	
(e.g.,	de	Sousa	&	Sampaio,	1999;	Gupta,	1997;	Theodoratos	&	Xu,	2004).
A specific characteristic of OLAP queries that typically join fact tables with multiple
dimension tables as well as a specific distribution of values in fact tables requires
different	indexing	schemes.	Three	kinds	of	indexes	have	been	developed	in	order	
to	optimize	OLAP	queries,	namely,	join	indexes,	bitmap	indexes,	and	bitmap	join	
indexes	(e.g.,	Aouiche,	Darmont,	&	Boussaïd,	2005;	O’Neil	&	Graefe,	1995;	Valdu-
riez, 1987; Wu, Otoo, & Shoshani, 2004). The efficiency of executing OLAP queries

x��

can	also	be	increased	by	parallel	processing	and	data	partitioning	techniques	(e.g.,	
Furtado,	2004;	Rao,	Zhang,	Magiddo,	&	Lohman,	2002;	Stöhr	&	Rahm,	2001).	
The	ETL	and	refreshing	processes	may	insert	erroneous	or	inconsistent	data	into	
a	DW.	As	a	consequence,	user	analyses	will	produce	confusing	or	wrong	results.	
That,	in	turn,	may	result	in	disastrous	business	decisions	made	by	decision	makers.	
For	these	reasons,	research	focused	also	on	measuring	and	assuring	data	quality	
(e.g.,	Jarke,	Jeusfeld,	Quix,	&	Vassiliadis,	1998;	Vassiliadis,	Bouzeghoub,	&	Quix,	
1999).
For	a	long	period	of	time,	the	existing	DW	technologies	have	tacitly	assumed	that	
a	DW	is	time	invariant;	that	is,	its	schema	and	the	structure	of	dimensions	do	not	
change	during	a	DW	lifetime.	In	practice,	however,	a	DW	structure	changes	as	the	
result	of	the	evolution	of	EDSs	(Rundensteiner,	Koeller,	&	Zhang,	2000),	changes	of	
the	real	world	represented	by	a	DW,	new	user	requirements,	as	well	as	the	creation	
of	simulation	environments,	to	list	the	most	common	cases.	Several	approaches	to	
handling	changes	in	DWs	have	been	developed.	They	are	categorized	as	supporting	
DW evolution (e.g., Blaschka, Sapia, & Höfling, 1999), temporal extensions (e.g.,
Hurtado,	Mendelson,	&	Vaisman,	1999;	Eder,	Koncilia,	&	Morzy,	2002),	simulation	
(e.g.,	Balmin,	Papadimitriou,	&	Papakonstanitnou,	2000)	as	well	as	versioning	(e.g.,	
Body,	Miquel,	Bédard,	&	Tchounikine,	2002;	Golfarelli,	Lechtenbörger,	Rizzi,	&	
Vossen,	2004;	Morzy	&	Wrembel,	2004).
In order to work properly and efficiently, all the above mentioned issues and tech-
niques	need	to	use	metadata.	Managing	various	types	of	metadata	in	DWs	also	has	
received	a	 lot	of	attention	resulting	 in	widely	accepted	 industry	standard	CWM	
(OMG,	2003;	Vetterli,	Vaduva,	&	Staudt,	2000),	supported	by	major	DW	software	
vendors.
Despite	the	continuous	development	in	the	data	warehousing	technology	that	has	
lasted	fore	more	than	20	years,	it	is	still	a	very	active	area	of	research.	Although	
most	of	the	discussed	research	and	technological	achievements	have	been	incorpo-
rated	into	various	commercial	database/data	warehouse	management	systems,	the	
discussed	issues	are	still	being	investigated	and	the	already	implemented	technolo-
gies	are	being	further	improved.

Further.Development.Directions

The	already	mature	technologies	discussed	in	the	previous	section	are	continuously	
being	developed	but	new	areas	of	research	and	new	challenges	appear	on	the	scene.	
These	new	issues	come	from	various	novel	 information	 technologies	applied	 to	
real	business.
Nowadays,	huge	amounts	of	data	are	stored	in	various	Web	systems,	typically	in	
the	XML	format.	These	data	are	crucial	for	business	and,	therefore,	there	is	a	need	

 x���

to	analyze	them	in	a	similar	way	as	in	traditional	DWs.	This	requirement	led	to	
several	attempts	to	build	data	warehouses	from	Web	data	sources	(e.g.,	Golfarelli,	
Rizzi,	&	Vrdoljak,	2001)	and	to	provide	OLAP	functionality	for	XML	documents	
(e.g.,	Nassis,	Rajugan,	Dillon,	&	Rahayu,	2005;	Park,	Han,	&	Song,	2005).	
Advanced	image	processing	technologies	make	the	use	of	images	and	maps	easier	
and	more	common,	for	example,	Google	Maps	and	NASA	Earth	Observing	Sys-
tem	Data	and	Information	System	(EOSDIS).	In	order	to	use	information	hidden	
in	this	kind	of	data	a	user	needs	a	technology	that	combines	the	functionality	of	
Geographical	Information	Systems	with	the	functionality	of	data	warehouses	and	
OLAP.	To	this	end,	the	so	called	Spatial	OLAP	systems	are	being	developed	(e.g.,	
Stefanovic,	Han,	&	Koperski,	2000).
Last but not least, our environment is becoming gradually filled with different kinds
of sensors, for example, monitoring the intensity of traffic, controlling physical
parameters	of	technological	processes,	and	monitoring	patients’	vital	signs.	Sensors	
produce	streams	of	data	that	have	to	be	analyzed,	often	online.	Stream	data	arrive	
also	from	other	sources,	for	example,	a	click-stream	form	on	the	Internet,	shares	
from	a	stock	market,	and	transmission	signals	in	telecommunications.	Stream	data	
are characterized by a continuous flow, requiring huge storage space. In order to
reduce	 the	space,	historical	data	are	stored	as	summaries	or	 samples.	Typically,	
incoming	stream	data	need	to	be	continuously	analyzed.	This	leads	to	challenges	in	
(1)	querying	streams	online,	(2)	querying	both	historical	summarized/sampled	data	
and	just	incoming	data,	as	well	as	(3)	quickly	accessing	data,	that	is,	indexing.	Some	
substantial	achievements	have	already	been	done	in	this	area	and	some	attempts	
have	been	made	towards	implementing	DWs	for	stream	data	(Stream,	2006).
As	it	can	be	clearly	observed,	there	are	multiple	kinds	of	data	warehouses	(rela-
tional,	XML,	spatial,	stream)	storing	data	of	different	formats	and	offering	different	
functionality.	Users	of	these	technologies	are	often	interested	in	combining	data	
coming	from	multiple	DWs.	This	requirement	leads	to	the	problem	of	integrating	
heterogeneous	DWs	(Torlone	&	Panella,	2005).

Book Objectives

The	goal	of	this	book	is	to	provide	an	insight	into	important	research	and	techno-
logical problems, solutions, and development trends in the field of data warehous-
ing	and	OLAP.	The	content	of	the	book	encompasses	important	aspects	of	these	
technologies,	from	a	DW	designing	and	implementing,	via	data	integration,	loading,	
and	DW	refreshing,	advanced	query	optimization	techniques,	to	new	areas	of	DW	
application.	As	such,	the	book:	

xiv

•	 	 Provides	the	current	state	of	the	research	and	technology	in	the	aforementioned	
domains,

•	 	 Constitutes	a	resource	of	possible	solutions	and	technologies	that	can	be	ap-
plied	when	designing,	implementing,	and	deploying	a	DW,	and

•	 	 Serves	as	an	up-to-date	bibliography	of	published	works	for	anyone	interested	
in	cutting-edge	DW	and	OLAP	issues.

Since	the	book	covers	a	wide	range	of	technical,	technological,	and	research	issues	
concerning	DW	and	OLAP	technologies,	it	is	intended	for	data	warehouse	design-
ers,	 administrators,	 programmers,	 and	project	managers.	 It	 offers	 them	a	better	
understanding	of	challenges,	possible	solutions,	and	advanced	applications	of	these	
technologies.	Moreover,	technical	aspects	covered	in	the	book	will	suit	the	contents	
of	many	DW	courses	offered	at	universities	both	in	Europe	and	in	the	U.S.	For	this	
reason,	the	book	can	be	a	useful	resource	for	students	as	well.

Structure.of. the.Book

The	body	of	the	book	consists	of	13	chapters	divided	into	four	sections.	Each	of	the	
sections	addresses	a	particular	research	and	technological	area,	namely:	

•	 Modeling	and	designing,
•	 Loading	and	refreshing,
• Efficiency of analytical processing, and
•	 Advanced	technologies	and	applications.	

Section	I	addresses	issues	concerning	one	of	the	initial	steps	in	the	whole	life	cycle	
of	 a	 data	warehouse,	 namely,	 requirements	 analysis,	 conceptual	modeling,	 and	
designing.	This	section	consists	of	three	chapters.	
Chapter	 I,	Conceptual Modeling Solutions for the Data Warehouse,	 by	Stefano	
Rizzi,	focuses	on	a	conceptual	modeling	that	provides	abstract	representations	of	
warehousing	process,	 data	 structures,	 and	 architectures.	The	 aim	of	 conceptual	
modeling	is	to	assure	that	a	model	is	independent	of	an	implementation.	The	author	
concentrates	on	a	conceptual	graphical	model	called	the	dimensional fact model
(DFM)	that	was	developed	to	support	multidimensional	modeling.	The	representation	
of	the	reality	constructed	using	the	DFM	consists	of	the	set	of	fact schemata.	The	
basic	concepts	of	the	model	include	facts,	measures,	dimensions,	and	hierarchies.	
The	DFM	suits	the	variety	of	modeling	situations	that	may	be	encountered	in	real	
projects	of	small	to	large	complexity.	The	chapter	provides	a	comprehensive	set	of	

 xv

solutions	for	conceptual	modeling	according	to	the	DFM	and	serves	a	DW	designer	
as	a	practical	guide	for	applying	different	modeling	solutions.	The	chapter	provides	
also	a	foundation	for	the	rest	of	the	book	as	it	discusses	fundamental	concepts	used	
in	the	DW	technology,	among	others:	multidimensional	modeling;	dimensions	and	
their	attributes;	and	shared,	incomplete,	recursive,	and	dynamic	hierarchies.
Chapter	 II,	Handling Structural Heterogeneity in OLAP,	 by	Carlos	A.	Hurtado	
and	Claudio	Gutierrez,	goes	beyond	the	DFM	model	and	it	focuses	on	modeling	
dimensions	that	may	have	different	structures;	that	is,	they	are	heterogeneous.	Such	
dimensions	are	created	as	the	result	of	mixing	multiple	dimensions	with	different	
structures	into	a	single	dimension.	In	the	chapter,	the	authors	show	how	to	incorpo-
rate	structural	heterogeneity	in	the	design	of	OLAP	models,	explain	why	structural	
heterogeneity	weakens	aggregate	navigation,	survey	different	techniques	to	deal	with	
heterogeneity,	present	a	class	of	dimension	integrity	constraints	to	model	structural	
heterogeneity,	and	demonstrate	the	practical	application	of	dimension	constraints	
to	support	aggregate	navigation.
Chapter	 III, Data Quality-Based Requirements Elicitation for Decision Support
Systems,	by	Alejandro	Vaisman,	presents	a	DW	design	method	that	supports	com-
plete	and	consistent	elicitation	of	functional	and	nonfunctional	requirements.	Func-
tional	requirements	take	into	consideration	queries	issued	in	applications,	whereas	
nonfunctional	requirements	comprise	data	structures	and	data	quality.	The	author	
argues	that	traditional	design	methods	for	requirements	elicitation	are	inappropriate	
in the field of decision support systems, and presents the so called DSS-METRIQ
method.	The	outcomes	of	the	method	are	the	set	of	requirement	documents	and	the	
specification of the operational data sources that can satisfy user requirements. The
chapter contains also the state-of-the-art in the field of requirements elicitation and
design	methods.
Section	II.addresses	 the	problems	related	 to	 loading	data	 into	a	data	warehouse	
and	keeping	 the	 content	 of	 a	DW	up	 to	 date.	This	 section	 is	 composed	of	 two	
chapters.
Chapter	IV,	Extraction, Transformation, and Loading Processes,	by	Jovanka	Adzic,	
Valter	Fiore,	and	Luisella	Sisto,	is	an	experience	report	on	the	application	of	the	
ETL	process	to	real	world	cases.	The	main	focus	of	this	chapter	is	on	designing	ETL	
processes	for	high	data	loading	frequency,	for	large	volumes	of	loaded	data,	and	for	
complex	data	processing/transformations.	In	this	context,	the	authors	identify	the	
most	common	critical	issues	and	constraints	that	have	an	impact	on	designing	the	
ETL	processes.	As	the	ETL	design	solution,	the	authors	propose	to	apply	a	layered	
infrastructure.	The	infrastructure	is	composed	of	typically	used	functionalities	and	
services	in	the	ETL	scenario	and	it	is	a	basis	for	building	various	applications.	The	
infrastructure includes, among others: DBMS access modules, file access modules,
parallel	read/write	modules,	and	data	processing	modules.	The	authors	also	discuss	
and	give	practical	suggestions	on	implementation	issues	including	database	parti-
tioning	options,	parallel	processing,	and	pipelining	in	the	context	of	ETL.

xvi

Chapter	V,	Data Warehouse Refreshment,	 by	Alkis	Simitsis,	 Panos	Vassiliadis,	
Spiros Skiadopoulos, and Timos Sellis, focuses on methods for designing efficient
workflows of tasks within ETL processes. The features that make ETL challenging
include,	among	others:	huge	data	volumes,	assuring	the	quality	of	data,	assuring	
high performance, adapting workflows after changes in data sources, and changes
in	a	data	warehouse	itself.	As	a	response	to	these	challenges,	the	authors	propose	a	
modeling	approach/framework	and	its	examplary	application	for	the	construction	
of ETL workflows. This approach is based on the life cycle of the ETL processes.
The	life	cycle	consists	of	four	phases:	reverse	engineering	and	requirements	coll-
ection;	logical	design;	tuning	and	physical	design;	and	software	construction.	The	
aim	of	the	presented	framework	is	to	facilitate,	manage,	and	optimize	the	design	
and implementation of the ETL workflows in order to create an optimal workflow.
The	framework	supports	all	the	phases	of	ETL	design,	from	the	initial	design	to	a	
deployment	stage	and	utilization,	under	continuous	evolution	of	a	data	warehouse.	
The	chapter	contains	also	a	comprehensive	state	of	the	art	on	commercially	avail-
able tools and research achievements in the field of ETL.
Section	III.describes challenges and solutions to the problem of assuring the effi-
ciency	of	analytical	processing.	Fundamental	research	and	technological	solutions	
to	this	problem	include	optimization	techniques	of	star	queries,	indexing,	partition-
ing,	and	clustering.
Chapter	VI,	Advanced Ad Hoc Star Query Processing,	 by	Nikos	Karayannidis,	
Aris Tsois, and Timos Sellis, focuses on efficient processing of OLAP queries.
OLAP	applications	rely	heavily	on	the	so	called	star	queries	that	join	fact	tables	
with	multiple	dimension	tables.	Reducing	execution	time	of	such	joins	is	crucial	
for	a	DW	performance.	To	this	end,	a	new	approach	to	fact	table	organization	has	
been	developed,	called	a	hierarchical	clustering.	The	hierarchical	clustering	allows	
clustering	of	fact	data	according	to	paths	in	dimension	hierarchies.	This	clustering	
technique	exploits	path-based	surrogate	keys.	In	the	context	of	hierarchical	cluster-
ing,	star	query	processing	changes	radically.	In	this	chapter,	the	authors	present	a	
complete	abstract	processing	plan	that	captures	all	the	necessary	steps	in	evaluating	
star	queries	over	hierarchically	clustered	fact	tables.	Furthermore,	the	authors	dis-
cuss	issues	on	optimizing	star	queries	within	the	context	of	the	abstract	processing	
plan and they define the abstract operations in terms of physical operations over
the	CUBE	File	data	structure.	
Chapter	VII,	Bitmap Indices for Data Warehouses,	by	Kurt	Stockinger	and	Kesh-
eng	Wu,	overviews	the	issues	related	to	a	special	kind	of	index	used	for	optimizing	
OLAP	queries,	namely,	the	bitmap	index.	Typically,	bitmap	indexes	work	well	for	
attributes	of	 low	cardinality	since	the	 indexes	are	small	for	such	atrributes.	The	
higher	cardinality	of	an	indexed	attribute,	the	larger	size	of	a	bitmap	index.	In	order	
to	reduce	the	sizes	of	bitmap	indexes	various	techniques	are	used.	This	chapter	over-
views	such	techniques,	namely,	encoding,	compression,	and	binning	and	it	focuses	
on	a	particular	compression	technique	called	a	word-aligned-hybrid	compression.	

 xvii

Moreover,	the	authors	present	multiple	experimental	results	comparing	different	
encoding	techniques	and	showing	the	characteristics	of	the	word-aligned-hybrid	
compression.	The	results	indicate	that	for	high	cardinality	attributes	compressed		
bitmap	indexes	also	offer	good	index	characteristics	with	respect	to	their	sizes	and	
query	response	times.
Chapter	VIII,	Indexing in Data Warehouses: Bitmaps and Beyond,	by	Karen	C.	
Davis	 and	Ashima	Gupta,	 elaborates	 further	on	 the	 issues	presented	 in	Chapter	
VII.	In	this	chapter	the	authors	focus	on	an	alternative	encoding	technique	that	is	
based	not	only	on	values	of	indexed	attributes	but	also	on	an	additional	knowledge	
derived	from	queries.	This	knowledge	is	used	for	constructing	the	so	called	property	
maps,	each	of	which	describes	properties	of	indexed	attributes.	The	characteristics	
of	property	maps	with	respect	to	query	processing	is	the	main	contribution	of	this	
chapter.	Additionally,	the	chapter	contains	a	concise	overview	of	different	kinds	of	
bitmap	indexes.
Chapter	 IX,	Efficient and Robust Node-Partitioned Data Warehouses,	 by	Pedro	
Furtado, addresses the problem of running large data warehouses efficiently on
low	cost	platforms.	In	order	to	achieve	this	goal,	the	author	proposes	to	partition	a	
data	warehouse	over	multiple	servers	(nodes)	in	a	network.	Such	a	partitioning	may	
cause	other	challenges	in	assuring	data	availability	as	well	as	distributed	analytical	
query	optimization.	In	this	chapter	the	author	shows	how	to	use	replicas	for	the	
purpose	of	designing	a	robust	data	warehouse	partitioning	strategy	that	guarantees	
efficient OLAP processing and data availability. The author also concentrates on
data partitioning strategies as well as on efficient parallel join processing and query
transformations.
Chapter	X,	OLAP with a Database Cluster,	by	Uwe	Röhm,	presents	clustered	data	
warehouse	architecture	as	an	alternative	to	the	approach	discussed	in	Chapter	IX.	
The	clustered	architecture	is	based	on	a	cluster	of	commercial	off-the-shelf	comput-
ers	as	hardware	infrastructure	that	run	off-the-shelf	database	management	systems	
as	transactional	storage	managers.	In	this	architecture,	the	same	data	may	be	dis-
tributed	over	several	nodes	by	using	replication	mechanisms.	As	a	consequence,	
some	replicas	may	be	out	of	date.	In	order	to	handle	queries	on	outdated	data,	the	
author	proposes	an	approach	 to	replication	management,	called	freshness-aware	
scheduling,	 that	 introduces	 a	 new	quality-of-service	 parameter.	This	 parameter	
allows the specification of an explicit freshness limit in queries having an impact
on	replicas	used	in	these	queries.	Based	on	the	value	of	quality-of-service	a	query	
may	be	routed	to	the	most	appropriate	node.	Multiple	query	routing	strategies	and	
physical	data	design	alternatives	are	also	discussed	in	this	chapter.	
Section	IV.focuses	on	new	domains	for	applying	the	data	warehouse	and	OLAP	
technologies.	These	 novel	 domains	 pose	 new	challenges,	 among	others	 in	 data	
modeling techniques, assuring analytical processing efficiency as well as in data
storage/organization	techniques.
Chapter	XI,	Towards Integrating Data Warehousing with Data Mining Techniques,	
by	Rokia	Missaoui,	Ganaël	Jatteau,	Ameur	Boujenoui,	and	Sami	Naouali,	addresses	

xviii

problems	and	presents	solutions	for	coupling	data	warehousing	and	data	mining	
technologies. The work aims at developing an approach for flexible and efficient
answer	to	data	mining	queries	addressed	either	to	a	relational	or	a	multidimensional	
database. The authors investigate the two following techniques. The first one ex-
ploits	lattice	based	mining	algorithms	for	generating	frequent	closed	itemsets	from	
multidimensional	data.	The	second	technique	uses	new	operators,	similar	in	spirit	
to	the	OLAP	ones,	in	order	to	support	data	mining	on	demand.	These	new	operators	
working	on	concept	lattices	include	projection,	selection,	and	assembly.	
Chapter	XII,	Temporal Semistructured Data Models and Data Warehouses,	 by	
Carlo	Combi	and	Barbara	Oliboni,	extends	the	application	of	the	DW	technology	
to	semistructured	data	that	may	evolve	in	time.	In	order	to	store	and	analyze	data	of	
this	kind,	the	authors	propose	a	graph-based	temporal	semistructured	data	model.	
In	this	model,	semistructured	data	are	represented	as	a	labeled	graph	with	complex	
nodes	representing	abstract	entities,	simple	nodes	representing	primitive	values	as	
well	as	with	edges	connecting	nodes.	Labels	are	associated	with	nodes	and	edges.	
Temporal	aspects	of	data	are	handled	by	including	valid	time	intervals	in	labels.	
In	order	to	assure	the	consistency	of	this	model,	the	authors	propose	two	kinds	of	
integrity	constraints,	namely,	basic	and	domain-dependent	ones.	Basic	constraints	
have to be satisfied by every graph, whereas domain-dependent constraints can
be defined either for some specific nodes and edges or for the whole graph for a
specific application domain.
Chapter	XIII,	Spatial Online Analytical Processing (SOLAP): Concepts, Architec-
tures, and Solutions from a Geomatics Engineering Perspective,	by	Yvan	Bédard,	
Sonia	Rivest,	and	Marie-Josée	Proulx,	makes	the	reader	familiar	with	challenges	
related	to	analyzing	spatial	data	within	the	so	called	framework	of	spatial	OLAP.	
The	chapter	outlines	the	particularities	of	spatial	data	and	presents	the	state	of	the	art	
of	spatial	OLAP	applications.	The	main	part	of	the	chapter	discusses	the	concepts,	
issues,	challenges,	and	solutions	related	to	spatial	OLAP.	This	valuable	discussion	
results	from	the	experience	of	the	authors	with	building	a	commercially	available	
spatial	OLAP	system.

Robert Wrembel
Poznań, Poland

Christian Koncilia
Munich, Germany

June 2006

 x�x

References

Adamson,	C.,	&	Venerable,	M.	 (1998).	Data warehouse design solutions.	 John	
Wiley	&	Sons.

Aouiche,	K.,	Darmont,	J.,	&	Boussaïd,	O.	(2005).	Automatic	selection	of	bitmap	join	
indexes	in	data	warehouse.	In	A.	Min	Tjoa	&	J.	Trujillo	(Eds.),	International
Conference on Data Warehousing and Knowledge Discovery (LNCS	3589,	
pp.	64-73).	Springer	Verlag.

Balmin,	A.,	Papadimitriou,	T.,	&	Papakonstanitnou,	Y.	(2000).	Hypothetical	queries	
in	an	OLAP	environment.	In	A.	El	Abbadi,	et	al.	(Eds.),	International Confer-
ence on Very Large Data Bases	(pp.	220-231).	Morgan	Kaufmann.

Blaschka, M., Sapia, C., & Höfling, G. (1999). On schema evolution in multidimen-
sional	databases.	In	M.	K.	Mohania	&	A.	Min	Tjoa	(Eds.),	Data warehousing
and knowledge discovery	(LNCS	1676,	pp.	153-164).	Springer-Verlag.

Body,	M.,	Miquel,	M.,	Bédard,	Y.,	&	Tchounikine,	A.	(2002).	A	multidimensional	
and	multiversion	structure	for	OLAP	applications.	In	D.	Theodoratos	(Ed.),	
ACM International Workshop on Data Warehousing and OLAP	 (pp.	 1-6).	
ACM	Press.

Ceri,	 S.,	&	Widom,	 J.	 (1991).	Deriving	 production	 rules	 for	 incremental	 view	
maintenance.	In	G.	M.	Lohman	et	al.	(Eds.),	International Conference on Very
Large Data Bases	(pp.	577-589).	Morgan	Kaufmann.

Chaudhuri,	S.,	&	Dayal,	U.	(1997).	An	overview	of	data	warehousing	and	OLAP	
technology.	SIGMOD Record, 26(1),	65-74.

Colby,	L.	S.,	Kawaguchi,	A.,	Lieuwen,	D.	F.,	Mumick,	I.	S.,	&	Ross,	K.	A.	(1997).	
Supporting	multiple	view	maintenance	policies.	In	J.	Peckham	(Ed.),	ACM
SIGMOD International Conference on Management of Data	(pp.	405-416).	
ACM	Press.

de Sousa, M. F., & Sampaio, M. C. (1999). Efficient materialization and use of
views	in	data	warehouses.	SIGMOD Record, 28(1),	78-83.

Eder,	J.,	Koncilia,	C.,	&	Morzy,	T.	(2002).	The	COMET	metamodel	for	temporal	
data	warehouses.	In	A.	Banks	Pidduck,	et	al.	(Eds.),	International Conference
CAiSE	(LNCS	2348,	pp.	83-99).	Springer-Verlag.

EDWMarket.	 (2004).	 The evolving enterprise data warehouse market:
Part 1.	 Retrieved	 June	 15,	 2006,	 from	 http://www.teradata.com/t/pdf.
aspx?a=83673&b=118524

Furtado,	P.	(2004).	Workload-based	placement	and	join	processing	in	node-parti-
tioned	data	warehouses.	In	Y.	Kambayashi,	et	al.	(Eds.),	International Con-
ference on Data Warehousing and Knowledge Discovery	(LNCS	3181,	pp.	
38-47).	Springer-Verlag.

xx

Golfarelli,	M.,	Lechtenbörger,	J.,	Rizzi,	S.,	&	Vossen,	G.	(2004).	Schema	version-
ing	in	data	warehouses.	In	S.	Wang,	et	al.	(Eds.),	Conceptual Modeling for
Advanced Application Domains, ER 2004 Workshops	(LNCS	3289,	pp.	415-
428).	Springer-Verlag.

Golfarelli,	M.,	Rizzi,	S.,	&	Vrdoljak,	B.	(2001).	Data	warehouse	design	from	XML	
sources.	In	J.	Hammer	(Ed.),	ACM International Workshop on Data Warehous-
ing and OLAP	(pp.	40-47).	ACM	Press.

Gupta,	H.	(1997).	Selection	of	views	to	materialise	in	a	data	warehouse.	In	F.	N.	
Afrati	&	P.	G.	Kolaitis	(Eds.),	Database theory: ICDT	(LNCS	1186,	pp.	98-
112).	Springer-Verlag.

Gupta,	A.,	&	Mumick,	I.	S.	(Eds.).	(1999).	Materialized views: Techniques, imple-
mentations, and applications.	MIT	Press.

Gyssens,	M.,	&	Lakshmanan,	L.	V.	S.	(1997).	A	foundation	for	multi-dimensional	
databases.	In	M.	Jarke,	et	al.	(Eds.),	International Conference on Very Large
Data Bases	(pp.	106-115).	Morgan	Kaufmann	Publishers.	

Hurtado,	C.,	&	Mendelzon,	A.	(2002).	OLAP	dimension	constraints.	In	L.	Popa	
(Ed.),	ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems	(pp.	169-179).	ACM	Press.	

Hurtado,	C.	A.,	Mendelzon,	A.	O.,	&	Vaisman,	A.	A.	(1999).	Maintaining	data	cubes	
under	dimension	updates.	In	Proceedings of the	International Conference on
Data Engineering	(pp.	346-355).	IEEE	Computer	Society	Press.

Jarke,	M.,	 Jeusfeld,	M.	A.,	Quix,	C.,	&	Vassiliadis,	P.	 (1998).	Architecture	 and	
quality	in	data	warehouses.	In	B.	Pernici	&	C.	Thanos	(Eds.),	International
Conference on Advanced Information Systems Engineering	(LNCS	1413,	pp.	
93-113).	Springer-Verlag.

Kimball,	R.,	&	Caserta,	J.	(2004).	The data warehouse ETL tookit.	John	Wiley	&	
Sons.

Kimball,	R.,	Reeves,	L.,	Ross,	M.,	&	Thornthwaite,	W.	(1998).	The data warehouse
lifecycle toolkit.	John	Wiley	&	Sons.

Letz,	C.,	Henn,	E.	T.,	&	Vossen,	G.	(2002).	Consistency	in	data	warehouse	dimen-
sions.	In	M.	A.	Nascimento,	et	al.	(Eds.),	International Database Engineering
& Applications Symposium	(pp.	224-232).	IEEE	Computer	Society	Press.

Luján-Mora,	S.,	&	Trujillo,	J.	(2004).	Physical	modeling	of	data	warehouses	using	
UML.	In	K.	Davis	&	M.	Ronthaler	(Eds.),	ACM International Workshop on
Data Warehousing and OLAP	(pp.	48-57).	ACM	Press.

Morzy,	T.,	&	Wrembel,	R.	(2004).	On	querying	versions	of	multiversion	data	ware-
house.	In	K.	Davis	&	M.	Ronthaler	(Eds.),	ACM International Workshop on
Data Warehousing and OLAP	(pp.	92-101).	ACM	Press.

Nassis,	V.,	Rajugan,	R.,	Dillon,	T.	S.,	&	Rahayu,	J.	W.	(2005).	A	requirement	engi-
neering	approach	for	designing	XML-view	driven,	XML	document	warehous-

 xx�

es.	In	Proceedings of the	International Computer Software and Applications
Conference (COMPSAC)	(pp.	388-395).	IEEE	Computer	Society	Press.

Nguyen,	T.	M.,	Min	Tjoa,	A.,	&	Trujillo,	J.	(2005).	Data	warehousing	and	knowledge	
discovery:	A	chronological	view	of	research	challenges.	In	A.	Min	Tjoa	&	J.	
Trujillo	(Eds.),	Data warehousing and knowledge discovery	(LNCS	3589,	pp.	
530-535).	Springer-Verlag.

OLAPReport.	(2004).	Market share analysis.	Retrieved	June	15,	2006,	from	http://
www.olapreport.com/Market.htm	

OMG	 (Object	 Management	 Group).	 (2003).	 Common warehouse metamodel
specification, v1.1.	Retrieved	June	15,	2006,	from	http://www.omg.org/cgi-
bin/doc?formal/03-03-02

O’Neil,	P.,	&	Graefe,	G.	(1995).	Multi-table	joins	through	bitmapped	join	indices.	
SIGMOD Record, 24(3),	8-11.

Park,	B.	K.,	Han,	H.,	&	Song	I.	Y.	(2005).	XML-OLAP:	A	multidimensional	analysis	
framework	for	XML	warehouses.	In	A.	Min	Tjoa	&	J.	Trujillo	(Eds.),	Data
warehousing and knowledge discovery	 (LNCS	3589,	pp.	32-42).	Springer-
Verlag.

Quass,	D.,	&	Widom,	J.	(1997).	On-line	warehouse	view	maintenance.	In	J.	Peckham	
(Ed.),	ACM SIGMOD International Conference on Management of Data	(pp.	
393-404).	ACM	Press.

Rao,	 J.,	 Zhang,	C.,	Megiddo,	N.,	&	Lohman,	G.	 (2002).	Automating	 physical	
database	design	in	a	parallel	database.	In		M.	J.	Franklin	et	al.	(Eds.),	ACM
SIGMOD International Conference on Management of Data	(pp.	558-569).	
ACM	Press.

Roussopoulos,	N.	(1998).	Materialized	views	and	data	warehouses.	SIGMOD Re-
cord, 27(1),	21-26.

Rundensteiner,	E.,	Koeller,	A.,	&	Zhang,	X.	(2000).	Maintaining	data	warehouses	
over	changing	information	sources.	Communications of the ACM, 43(6),	57-
62.

Samtani,	S.,	Kumar,	V.,	&	Mohania,	M.	(1999).	Self	maintenance	of	multiple	views	in	
data	warehousing.	In	Proceedings of the	ACM CIKM International Conference
on Information and Knowledge Management	(pp.	292-299).	ACM	Press.

Simitsis,	A.,	Vassiliadis,	P.,	Terrovitis,	M.,	&	Skiadopoulos,	S.	(2005).	Graph-based	
modeling	of	ETL	activities	with	multi-level	transformations	and	updates.	In	A.	
Min	Tjoa	&	J.	Trujillo	(Eds.),	International Conference on Data Warehousing
and Knowledge Discovery		(LNCS	3589,	pp.	43-52).	Springer-Verlag.

Stefanovic,	N.,	Han,	J.,	&	Koperski,	K.	(2000).	Object-based	selective	materializa-
tion for efficient implementation of spatial data cubes. IEEE Transactions on
Knowledge and Data Engineering, 12(6),	938-958.

xx��

Stöhr,	T.,	&	Rahm,	E.	(2001).	WARLOCK:	A	data	allocation	tool	for	parallel	ware-
houses.	In	P.	M.	G.	Apers	et	al.	(Eds.),	International Conference on Very Large
Data Bases	(pp.	721-722).	Morgan	Kaufmann.

Stream.	 (2006).	Stanford Stream Data Manager.	Retrieved	June	15,	2006,	 from	
http://hake.stanford.edu/stream/

Torlone,	T.,	&	Panella,	I.	(2006).	Design	and	development	of	a	tool	for	integrating	
heterogeneous	data	warehouses.	 In	A.	Min	Tjoa	&	J.	Trujillo	 (Eds.),	Data	
warehousing	and	knowledge	discovery	(LNCS	3589,	pp.	105-114).	Springer-
Verlag.

Theodoratos,	D.,	&	Xu,	W.	(2004).	Constructing	search	space	for	materialized	view	
selection.	In	K.	Davis	&	M.	Ronthaler	(Eds.),	ACM International Workshop
on Data Warehousing and OLAP	(pp.	48-57).	ACM	Press.

Valduriez,	P.	(1987).	Join	indices.	ACM Transactions on Database Systems (TODS),
12(2),	218-246.

Vassiliadis,	P.,	Bouzeghoub,	M.,	&	Quix,	C.	(1999).	Towards	quality-oriented	data	
warehouse	usage	and	evolution.	In	M.	Jarke	&	A.	Oberweis	(Eds.),	Interna-
tional Conference CAiSE	(LNCS	1626,	pp.	164-179).	Springer-Verlag.

Vetterli,	T.,	Vaduva,	A.,	&	Staudt,	M.	(2000).	Metadata	standards	for	data	warehous-
ing:	Open	 information	model	 vs.	 common	warehouse	metadata.	SIGMOD
Record, 29(3),	68-75.

Widom,	J.	(1995).	Research	problems	in	data	warehousing.	In	Proceedings of the
Fourth International Conference on Information and Knowledge Management	
(pp.	25-30).	ACM	Press.

Wu,	K.,	Otoo,	E.	J.,	&	Shoshani,	A.	(2004).	On	the	performance	of	bitmap	indices	
for	high	cardinality	attributes.	In	M.	A.	Nascimento	et	al.	(Eds.),	International
Conference on Very Large Data Bases	(pp.	24-35).	Morgan	Kaufmann.

Zhuge,	Y.,	Garcia-Molina,	H.,	&	Wiener,	J.	L.	(1996).	The	strobe	algorithms	for	
multi-source	warehouse	 consistency.	 In	Proceedings of the Conference on
Parallel and Distributed Information Systems	(pp.	146-157).	IEEE	Computer	
Society	Press.

Zhuge,	Y.,	Wiener	J.,	Garcia-Molina,	H.	(1997):	Multiple	view	consistency	for	data	
warehousing.	In	W.	A.	Gray	&	P.	A.		Larson	(Eds.),	International Conference
on Data Engineering	(pp.	289-300).	IEEE	Computer	Society	Press.

 xx���

Acknowledgments

The	editors	would	like	to	acknowledge	the	help	of	all	involved	in	the	review	process	of	
the	book.	The	reviewers	provided	comprehensive,	critical,	and	constructive	comments.	
Without	their	support	the	project	could	not	have	been	satisfactorily	completed.	

List.of.Reviewers
Bartosz Bębel, Poznań University of Technology, Poland
Mauricio Minuto Espil, Pontificia Universidad Católica, Argentina
Pedro	Furtado,	University	of	Coimbra,	Spain
Matteo	Golfarelli,	University	of	Bologna,	Italy
Carlos	Hurtado,	Universidad	de	Chile,	Chile
Stanisław Kozielski, Silesian University of Technology, Poland
Jens	Lechtenbörger,	University	of	Münster,	Germany
Sergio	Luján	Mora,	University	of	Alicante,	Spain
Christoph	Mayer,	OFFIS,	Germany
Dieter	Mitsche,	ETH	Zurich,	Switzerland
Stefano	Rizzi,	University	of	Bologna,	Italy
Kurt	Stockinger,	University	of	California,	USA
David	Taniar,	Monash	University,	Australia

xxiv

Alejandro	Vaisman,	Universidad	de	Buenos	Aires,	Argentina
Marek Wojciechowski, Poznań University of Technology, Poland

Special	thanks	also	go	to	the	published	team	at	Idea	Group	Inc.	In	particular,	to	Jan	
Travers	and	Mehdi	Khosrow-Pour	who	gave	us	the	opportunity	to	publish	the	book.	
Thank	you	also	to	our	development	editor,	Kristin	Roth,	who	assisted	us	through	
the	process	of	editing	the	book.	

Robert Wrembel
Poznań, Poland

Christian Koncilia
Munich, Germany

June 2006

 xxv

Section I

Modeling	and	Designing

xxvi

Conceptual Modeling Solutions for the Data Warehouse �

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Chapter.I

Conceptual.Modeling.
Solutions.for.the.
Data.Warehouse

Stefano Rizzi
DEIS-University of Bologna, Italy

Abstract

In the context of data warehouse design, a basic role is played by conceptual mod-
eling, that provides a higher level of abstraction in describing the warehousing
process and architecture in all its aspects, aimed at achieving independence of
implementation issues. This chapter focuses on a conceptual model called the DFM
that suits the variety of modeling situations that may be encountered in real projects
of small to large complexity. The aim of the chapter is to propose a comprehensive
set of solutions for conceptual modeling according to the DFM and to give the de-
signer a practical guide for applying them in the context of a design methodology.
Besides the basic concepts of multidimensional modeling, the other issues discussed
are descriptive and cross-dimension attributes; convergences; shared, incomplete,
recursive, and dynamic hierarchies; multiple and optional arcs; and additivity.

� Rizzi

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Introduction

Operational databases are focused on recording transactions, thus they are prevalently
characterized by an OLTP (online transaction processing) workload. Conversely,
data warehouses (DWs) allow complex analysis of data aimed at decision support;
the workload they support has completely different characteristics, and is widely
known as OLAP (online analytical processing). Traditionally, OLAP applications
are based on multidimensional modeling that intuitively represents data under the
metaphor of a cube whose cells correspond to events that occurred in the business
domain (Figure 1). Each event is quantified by a set of measures; each edge of the
cube corresponds to a relevant dimension for analysis, typically associated to a
hierarchy of attributes that further describe it. The multidimensional model has a
twofold benefit. On the one hand, it is close to the way of thinking of data analyz-
ers, who are used to the spreadsheet metaphor; therefore it helps users understand
data. On the other hand, it supports performance improvement as its simple structure
allows designers to predict the user intentions.
Multidimensional modeling and OLAP workloads require specialized design tech-
niques. In the context of design, a basic role is played by conceptual modeling that
provides a higher level of abstraction in describing the warehousing process and
architecture in all its aspects, aimed at achieving independence of implementation
issues. Conceptual modeling is widely recognized to be the necessary foundation
for building a database that is well-documented and fully satisfies the user require-

Figure 1. The cube metaphor for multidimensional modeling

Conceptual Modeling Solutions for the Data Warehouse �

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

ments;	usually,	it	relies	on	a	graphical	notation	that	facilitates	writing,	understand-
ing,	and	managing	conceptual	schemata	by	both	designers	and	users.	
Unfortunately, in the field of data warehousing there still is no consensus about a
formalism	for	conceptual	modeling	(Sen	&	Sinha,	2005).	The	entity/relationship	
(E/R)	model	is	widespread	in	the	enterprises	as	a	conceptual	formalism	to	provide	
standard	documentation	for	relational	information	systems,	and	a	great	deal	of	ef-
fort	has	been	made	to	use	E/R	schemata	as	the	input	for	designing	nonrelational	
databases	as	well	 (Fahrner	&	Vossen,	1995);	nevertheless,	as	E/R	is	oriented	 to	
support	 queries	 that	 navigate	 associations	 between	 data	 rather	 than	 synthesize	
them,	it	is	not	well	suited	for	data	warehousing	(Kimball,	1996).	Actually,	the	E/R	
model	has	enough	expressivity	to	represent	most	concepts	necessary	for	modeling	
a	DW;	on	the	other	hand,	in	its	basic	form,	it	is	not	able	to	properly	emphasize	the	
key	aspects	of	the	multidimensional	model,	so	that	its	usage	for	DWs	is	expensive	
from	the	point	of	view	of	the	graphical	notation	and	not	intuitive	(Golfarelli,	Maio,	
&	Rizzi,	1998).
Some	designers	claim	to	use	star	schemata	for	conceptual	modeling.	A	star schema	
is	the	standard	implementation	of	the	multidimensional	model	on	relational	plat-
forms; it is just a (denormalized) relational schema, so it merely defines a set of
relations	and	integrity	constraints.	Using	the	star	schema	for	conceptual	modeling	
is	like	starting	to	build	a	complex	software	by	writing	the	code,	without	the	sup-
port	of	and	static,	functional,	or	dynamic	model,	which	typically	leads	to	very	poor	
results	from	the	points	of	view	of	adherence	to	user	requirements,	of	maintenance,	
and	of	reuse.
For	all	these	reasons,	in	the	last	few	years	the	research	literature	has	proposed	several	
original	approaches	for	modeling	a	DW,	some	based	on	extensions	of	E/R,	some	
on	extensions	of	UML.	This	chapter	focuses	on	an	ad	hoc	conceptual	model,	the	
dimensional fact model (DFM), that was first proposed in Golfarelli et al. (1998) and
continuously enriched and refined during the following years in order to optimally
suit	the	variety	of	modeling	situations	that	may	be	encountered	in	real	projects	of	
small	to	large	complexity.	The	aim	of	the	chapter	is	to	propose	a	comprehensive	set	
of	solutions	for	conceptual	modeling	according	to	the	DFM	and	to	give	a	practical	
guide	for	applying	them	in	the	context	of	a	design	methodology.	Besides	the	basic	
concepts	of	multidimensional	modeling,	namely	facts,	dimensions,	measures,	and	
hierarchies,	the	other	issues	discussed	are	descriptive	and	cross-dimension	attributes;	
convergences;	shared,	incomplete,	recursive,	and	dynamic	hierarchies;	multiple	and	
optional	arcs;	and	additivity.
After	reviewing	the	related	 literature	 in	 the	next	section,	 in	 the	 third	and	fourth	
sections,	we	introduce	the	constructs	of	DFM	for	basic	and	advanced	modeling,	re-
spectively. Then, in the fifth section we briefly discuss the different methodological
approaches	to	conceptual	design.	Finally,	in	the	sixth	section	we	outline	the	open	
issues	in	conceptual	modeling,	and	in	the	last	section	we	draw	the	conclusions.

� R�zz�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Related.Literature

In	the	context	of	data	warehousing,	the	literature	proposed	several	approaches	to	
multidimensional	modeling.	Some	of	them	have	no	graphical	support	and	are	aimed	
at	establishing	a	formal	foundation	for	representing	cubes	and	hierarchies	as	well	
as	an	algebra	for	querying	them	(Agrawal,	Gupta,	&	Sarawagi,	1995;	Cabibbo	&	
Torlone,	1998;	Datta	&	Thomas,	1997;	Franconi	&	Kamble,	2004a;	Gyssens	&	
Lakshmanan,	1997;	Li	&	Wang,	1996;	Pedersen	&	Jensen,	1999;	Vassiliadis,	1998);	
since	we	believe	that	a	distinguishing	feature	of	conceptual	models	is	that	of	provid-
ing	a	graphical	support	to	be	easily	understood	by	both	designers	and	users	when	
discussing	and	validating	requirements,	we	will	not	discuss	them.
The	approaches	to	“strict”	conceptual	modeling	for	DWs	devised	so	far	are	sum-
marized	 in	Table	1.	For	each	model,	 the	 table	shows	 if	 it	 is	associated	 to	some	
method	for	conceptual	design	and	if	it	is	based	on	E/R,	is	object-oriented,	or	is	an	
ad	hoc	model.
The	discussion	about	whether	E/R-based,	object-oriented,	or	ad	hoc	models	are	
preferable	is	controversial.	Some	claim	that	E/R	extensions	should	be	adopted	since	
(1)	E/R	has	been	tested	for	years;	(2)	designers	are	familiar	with	E/R;	(3)	E/R	has	
proven flexible and powerful enough to adapt to a variety of application domains;
and	(4)	several	important	research	results	were	obtained	for	the	E/R	(Sapia,	Blas-
chka, Hofling, & Dinter, 1998; Tryfona, Busborg, & Borch Christiansen, 1999).
On	 the	other	 hand,	 advocates	 of	 object-oriented	models	 argue	 that	 (1)	 they	 are	
more	expressive	and	better	represent	static	and	dynamic	properties	of	information	
systems;	(2)	they	provide	powerful	mechanisms	for	expressing	requirements	and	
constraints;	(3)	object-orientation	is	currently	the	dominant	trend	in	data	modeling;	
and (4) UML, in particular, is a standard and is naturally extensible (Abelló, Samos,
&	Saltor,	2002;	Luján-Mora,	Trujillo,	&	Song,	2002).	Finally,	we	believe	that	ad	
hoc	models	compensate	for	the	lack	of	familiarity	from	designers	with	the	fact	that	
(1)	they	achieve	better	notational	economy;	(2)	they	give	proper	emphasis	to	the	
peculiarities	of	the	multidimensional	model,	thus	(3)	they	are	more	intuitive	and	

E/R	extension object-oriented ad	hoc

no	method

Franconi	and	Kamble	
(2004b);

Sapia	et	al.	(1998);	
Tryfona	et	al.	(1999)

Abelló et al. (2002);
Nguyen,	Tjoa,	and	Wagner	

(2000)
Tsois	et	al.	(2001)

method Luján-Mora	et	al.	(2002) Golfarelli	et	al.	(1998);
Hüsemann	et	al.	(2000)

Table 1. Approaches to conceptual modeling

Conceptual Modeling Solutions for the Data Warehouse �

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

readable	by	nonexpert	users.	In	particular,	they	can	model	some	constraints	related	
to	functional	dependencies	(e.g.,	convergences	and	cross-dimensional	attributes)	
in	a	simpler	way	than	UML,	that	requires	the	use	of	formal	expressions	written,	
for	instance,	in	OCL.
A	comparison	of	the	different	models	done	by	Tsois,	Karayannidis,	and	Sellis	(2001)	
pointed	out	that,	abstracting	from	their	graphical	form,	the	core	expressivity	is	simi-
lar. In confirmation of this, we show in Figure 2 how the same simple fact could be
modeled	through	an	E/R	based,	an	object-oriented,	and	an	ad	hoc	approach.

Figure 2. The SALE fact modeled through a starER (Sapia et al., 1998), a UML class
diagram (Luján-Mora et al., 2002), and a fact schema (Hüsemann, Lechtenbörger,
& Vossen, 2000)

� R�zz�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

The.Dimensional.Fact.Model:............
Basic.Modeling

In	this	chapter	we	focus	on	an	ad	hoc	model	called	the	dimensional	fact	model.	The	
DFM is a graphical conceptual model, specifically devised for multidimensional
modeling,	aimed	at:

•	 Effectively	supporting	conceptual	design
•	 Providing	 an	 environment	 on	 which	 user	 queries	 can	 be	 intuitively	 ex-

pressed
• Supporting the dialogue between the designer and the end users to refine the

specification of requirements
•	 Creating	a	stable	platform	to	ground	logical	design
•	 Providing	an	expressive	and	non-ambiguous	design	documentation

The	representation	of	reality	built	using	the	DFM	consists	of	a	set	of	fact schemata.	
The	basic	concepts	modeled	are	facts,	measures,	dimensions,	and	hierarchies.	In	
the following we intuitively define these concepts, referring the reader to Figure 3
that	depicts	a	simple	fact	schema	for	modeling	invoices	at	line	granularity;	a	formal	
definition of the same concepts can be found in Golfarelli et al. (1998).

Definition 1: A	fact	is	a	focus	of	interest	for	the	decision-making	process;	
typically,	it	models	a	set	of	events	occurring	in	the	enterprise	world.	A	

Figure 3. A basic fact schema for the INVOICE LINE fact

Conceptual Modeling Solutions for the Data Warehouse �

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

fact	is	graphically	represented	by	a	box	with	two	sections,	one	for	the	
fact	name	and	one	for	the	measures.

Examples	of	facts	in	the	trade	domain	are	sales,	shipments,	purchases,	claims;	in	
the financial domain: stock exchange transactions, contracts for insurance policies,
granting	of	loans,	bank	statements,	credit	cards	purchases.	It	is	essential	for	a	fact	
to	have	some	dynamic	aspects,	that	is,	to	evolve	somehow	across	time.	

Guideline.1:	The	concepts	represented	in	the	data	source	by	frequently-
updated	 archives	 are	 good	 candidates	 for	 facts;	 those	 represented	 by	
almost-static	archives	are	not.

As	a	matter	of	fact,	very	few	things	are	completely	static;	even	the	relationship	
between	cities	and	regions	might	change,	if	some	border	were	revised.	Thus,	the	
choice	of	facts	should	be	based	either	on	the	average	periodicity	of	changes,	or	on	
the specific interests of analysis. For instance, assigning a new sales manager to a
sales	department	occurs	less	frequently	than	coupling	a	promotion	to	a	product;	thus,	
while	the	relationship	between	promotions	and	products	is	a	good	candidate	to	be	
modeled	as	a	fact,	that	between	sales	managers	and	departments	is	not—except	for	
the	personnel	manager,	who	is	interested	in	analyzing	the	turnover!

Definition 2:	A	measure	is	a	numerical	property	of	a	fact,	and	describes	
one	of	its	quantitative	aspects	of	interests	for	analysis.	Measures	are	in-
cluded	in	the	bottom	section	of	the	fact.

For	instance,	each	invoice	line	is	measured	by	the	number	of	units	sold,	the	price	
per	unit,	the	net	amount,	and	so	forth.	The	reason	why	measures	should	be	numeri-
cal	is	that	they	are	used	for	computations.	A	fact	may	also	have	no	measures,	if	
the	only	interesting	thing	to	be	recorded	is	the	occurrence	of	events;	in	this	case	
the	fact	scheme	is	said	to	be	empty	and	is	typically	queried	to	count	the	events	that	
occurred.

Definition 3: A	dimension is a fact property with a finite domain and
describes	one	of	its	analysis	coordinates.	The	set	of	dimensions	of	a	fact	
determines its finest representation granularity. Graphically, dimensions
are	represented	as	circles	attached	to	the	fact	by	straight	lines.

Typical	dimensions	for	the	invoice	fact	are	product,	customer,	agent,	and	date.	

� R�zz�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Guideline.2:	At	least	one	of	the	dimensions	of	the	fact	should	represent	
time,	at	any	granularity.

The	relationship	between	measures	and	dimensions	is	expressed,	at	the	instance	
level,	by	the	concept	of	event.

Definition 4:	A	primary event	is	an	occurrence	of	a	fact,	and	is	identi-
fied by a tuple of values, one for each dimension. Each primary event is
described	by	one	value	for	each	measure.

Primary	events	are	the	elemental	information	which	can	be	represented	(in	the	cube	
metaphor,	they	correspond	to	the	cube	cells).	In	the	invoice	example	they	model	the	
invoicing	of	one	product	to	one	customer	made	by	one	agent	on	one	day;	it	is	not	
possible	to	distinguish	between	invoices	possibly	made	with	different	types	(e.g.,	
active,	passive,	returned,	etc.)	or	in	different	hours	of	the	day.

Guideline.3:.If	the	granularity	of	primary	events	as	determined	by	the	set	
of	dimensions	is	coarser	than	the	granularity	of	tuples	in	the	data	source,	
measures should be defined as either aggregations of numerical attributes
in	the	data	source,	or	as	counts	of	tuples.

Remarkably,	 some	 multidimensional	 models	 in	 the	 literature	 focus	 on	 treating	
dimensions	and	measures	symmetrically	(Agrawal	et	al.,	1995;	Gyssens	&	Lak-
shmanan,	1997).	This	is	an	important	achievement	from	both	the	point	of	view	of	
the uniformity of the logical model and that of the flexibility of OLAP operators.
Nevertheless	we	claim	that,	at	a	conceptual	level,	distinguishing	between	measures	
and dimensions is important since it allows logical design to be more specifically
aimed at the efficiency required by data warehousing applications.
Aggregation is the basic OLAP operation, since it allows significant information
useful	for	decision	support	to	be	summarized	from	large	amounts	of	data.	From	a	
conceptual	point	of	view,	aggregation	is	carried	out	on	primary	events	thanks	to	the	
definition of dimension attributes and hierarchies.

Definition 5:	A	dimension attribute is a property, with a finite domain, of
a	dimension.	Like	dimensions,	it	is	represented	by	a	circle.

For	instance,	a	product	is	described	by	its	type,	category,	and	brand;	a	customer,	by	
its	city	and	its	nation.	The	relationships	between	dimension	attributes	are	expressed	
by	hierarchies.

Conceptual Modeling Solutions for the Data Warehouse �

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Definition 6: A	hierarchy	is	a	directed	tree,	rooted	in	a	dimension,	whose	
nodes	are	all	the	dimension	attributes	that	describe	that	dimension,	and	
whose	arcs	model	many-to-one	associations	between	pairs	of	dimension	
attributes.	Arcs	are	graphically	represented	by	straight	lines.

Guideline 4:	Hierarchies	should	reproduce	the	pattern	of	interattribute	
functional	dependencies	expressed	by	the	data	source.

Hierarchies	 determine	 how	 primary	 events	 can	 be	 aggregated	 into	 secondary	
events and selected significantly for the decision-making process. The dimension
in which a hierarchy is rooted defines its finest aggregation granularity, while the
other dimension attributes define progressively coarser granularities. For instance,
thanks	to	the	existence	of	a	many-to-one	association	between	products	and	their	
categories,	the	invoicing	events	may	be	grouped	according	to	the	category	of	the	
products.

Definition 7:	Given	 a	 set	 of	 dimension	 attributes,	 each	 tuple	of	 their	
values identifies a secondary event	that	aggregates	all	the	corresponding	
primary	events.	Each	secondary	event	is	described	by	a	value	for	each	
measure	that	summarizes	the	values	taken	by	the	same	measure	in	the	
corresponding	primary	events.

We	close	this	section	by	surveying	some	alternative	terminology	used	either	in	
the	literature	or	in	the	commercial	tools.	There	is	substantial	agreement	on	us-
ing	the	term	dimensions	to	designate	the	“entry	points”	to	classify	and	identify	
events;	while	we	 refer	 in	particular	 to	 the	 attribute	determining	 the	minimum	
fact	granularity,	sometimes	the	whole	hierarchies	are	named	as	dimensions	(for	
instance,	the	term	“time	dimension”	often	refers	to	the	whole	hierarchy	built	on	
dimension	date).	Measures	are	sometimes	called	variables	or	metrics.	Finally,	in	
some	data	warehousing	tools,	the	term	hierarchy	denotes	each	single	branch	of	
the	tree	rooted	in	a	dimension.

The.Dimensional.Fact.Model:............
Advanced.Modeling

The	constructs	we	introduce	in	this	section,	with	the	support	of	Figure	4,	are	descrip-
tive	and	cross-dimension	attributes;	convergences;	shared,	incomplete,	recursive,	

�0 Rizzi

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

and	dynamic	hierarchies;	multiple	and	optional	arcs;	and	additivity.	Though	some	
of	them	are	not	necessary	in	the	simplest	and	most	common	modeling	situations,	
they	are	quite	useful	in	order	to	better	express	the	multitude	of	conceptual	shades	
that	characterize	real-world	scenarios.	In	particular	we	will	see	how,	following	the	
introduction of some of this constructs, hierarchies will no longer be defined as trees
to	become,	in	the	general	case,	directed	graphs.

Descriptive Attributes

In	several	cases	it	is	useful	to	represent	additional	information	about	a	dimension	
attribute,	though	it	is	not	interesting	to	use	such	information	for	aggregation.	For	
instance,	the	user	may	ask	for	knowing	the	address	of	each	store,	but	the	user	will	
hardly	be	interested	in	aggregating	sales	according	to	the	address	of	the	store.

Definition 8:	A	descriptive attribute specifies a property of a dimension
attribute,	to	which	is	related	by	an	x-to-one	association.	Descriptive	at-
tributes	are	not	used	for	aggregation;	they	are	always	leaves	of	their	hi-
erarchy	and	are	graphically	represented	by	horizontal	lines.

There	are	two	main	reasons	why	a	descriptive	attribute	should	not	be	used	for	ag-
gregation:

Guideline. 5:	A	 descriptive	 attribute	 either	 has	 a	 continuously-valued	
domain	(for	instance,	the	weight	of	a	product),	or	is	related	to	a	dimen-
sion	attribute	by	a	one-to-one	association	(for	instance,	the	address	of	a	
customer).

Cross-Dimension Attributes

Definition 9: A	cross-dimension attribute	is	a	(either	dimension	or	descrip-
tive)	attribute	whose	value	is	determined	by	the	combination	of	two	or	
more	dimension	attributes,	possibly	belonging	to	different	hierarchies.	It	
is	denoted	by	connecting	through	a	curve	line	the	arcs	that	determine	it.

For	instance,	if	the	VAT	on	a	product	depends	on	both	the	product	category	and	the	
state	where	the	product	is	sold,	it	can	be	represented	by	a	cross-dimension	attribute	
as	shown	in	Figure	4.

Conceptual Modeling Solutions for the Data Warehouse ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Convergence

Consider	the	geographic	hierarchy	on	dimension	customer	(Figure	4):	customers	live	
in	cities,	which	are	grouped	into	states	belonging	to	nations.	Suppose	that	custom-
ers	are	grouped	into	sales	districts	as	well,	and	that	no	inclusion	relationships	exist	
between	districts	and	cities/states;	on	the	other	hand,	sales	districts	never	cross	the	
nation	boundaries.	In	this	case,	each	customer	belongs	to	exactly	one	nation	which-
ever	of	the	two	paths	is	followed	(customer → city → state → nation or customer →
sales district → nat�on).	

Definition 10:	A	convergence	takes	place	when	two	dimension	attributes	
within	a	hierarchy	are	 connected	by	 two	or	more	alternative	paths	of	
many-to-one	associations.	Convergences	are	represented	by	letting	two	
or	more	arcs	converge	on	the	same	dimension	attribute.

The	existence	of	apparently	equal	attributes	does	not	always	determine	a	conver-
gence.	If	in	the	invoice	fact	we	had	a	brand city	attribute	on	the	product	hierarchy,	
representing	the	city	where	a	brand	is	manufactured,	there	would	be	no	convergence	
with	attribute	(customer) city,	since	a	product	manufactured	in	a	city	can	obviously	
be	sold	to	customers	of	other	cities	as	well.

Figure 4. The complete fact schema for the INVOICE LINE fact

�2 Rizzi

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Optional.Arcs

Definition 11:	An	optional arc	models	the	fact	that	an	association	repre-
sented within the fact scheme is undefined for a subset of the events. An
optional	arc	is	graphically	denoted	by	marking	it	with	a	dash.

For	instance,	attribute	diet	takes	a	value	only	for	food	products;	for	the	other	prod-
ucts, it is undefined.
In	the	presence	of	a	set	of	optional	arcs	exiting	from	the	same	dimension	attribute,	
their	coverage	can	be	denoted	in	order	to	pose	a	constraint	on	the	optionalities	in-
volved.	Like	for	IS-A	hierarchies	in	the	E/R	model,	the	coverage	of	a	set	of	optional	
arcs	is	characterized	by	two	independent	coordinates.	Let	a	be	a	dimension	attribute,	
and	b1,...,	bm	be	its	children	attributes	connected	by	optional	arcs:

•	 The	coverage	is	total	if	each	value	of	a	always	corresponds	to	a	value	for	at	
least	one	of	its	children;	conversely,	if	some	values	of	a	exist	for	which	all	of	
its children are undefined, the coverage is said to be partial.

•	 The	coverage	is	disjoint	if	each	value	of	a	corresponds	to	a	value	for,	at	most,	
one	of	its	children;	conversely,	if	some	values	of	a	exist	that	correspond	to	
values	for	two	or	more	children,	the	coverage	is	said	to	be	overlapped.

Thus,	overall,	there	are	four	possible	coverages,	denoted	by	T-D,	T-O,	P-D,	and	P-O.	
Figure	4	shows	an	example	of	optionality	annotated	with	its	coverage.	We	assume	
that	products	can	have	three	types:	food,	clothing,	and	household,	since	expiration	
date and size are defined only for, respectively, food and clothing, the coverage is
partial	and	disjoint.

Multiple.Arcs

In	most	cases,	as	already	said,	hierarchies	include	attributes	related	by	many-to-one	
associations.	On	the	other	hand,	in	some	situations	it	is	necessary	to	include	also	at-
tributes	that,	for	a	single	value	taken	by	their	father	attribute,	take	several	values.

Definition 12: A	multiple arc	 is	an	arc,	within	a	hierarchy,	modeling	a	
many-to-many	association	between	the	two	dimension	attributes	it	connects.	
Graphically,	it	is	denoted	by	doubling	the	line	that	represents	the	arc.

Conceptual Modeling Solutions for the Data Warehouse ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Consider	the	fact	schema	modeling	the	sales	of	books	in	a	library,	represented	in	
Figure	5,	whose	dimensions	are	date	and	book.	Users	will	probably	be	interested	
in	analyzing	sales	for	each	book author;	on	the	other	hand,	since	some	books	have	
two	or	more	authors,	the	relationship	between	book	and	author	must	be	modeled	
as	a	multiple	arc.

Guideline.6:	In	presence	of	many-to-many	associations,	summarizabil-
ity	is	no	longer	guaranteed,	unless	the	multiple	arc	is	properly	weighted.	
Multiple	arcs	should	be	used	sparingly	since,	in	ROLAP	logical	design,	
they	require	complex	solutions.

Summarizability	is	the	property	of	correcting	summarizing	measures	along	hierar-
chies	(Lenz	&	Shoshani,	1997).	Weights	restore	summarizability,	but	their	intro-
duction is artificial in several cases; for instance, in the book sales fact, each author
of	a	multiauthored	book	should	be	assigned	a	normalized	weight	expressing	her	
“contribution”	to	the	book.

Shared.Hierarchies

Sometimes,	large	portions	of	hierarchies	are	replicated	twice	or	more	in	the	same	
fact	schema.	A	typical	example	is	the	temporal	hierarchy:	a	fact	frequently	has	more	
than	one	dimension	of	type	date,	with	different	semantics,	and	it	may	be	useful	to	
define on each of them a temporal hierarchy month-week-year.	Another	example	are	
geographic hierarchies, that may be defined starting from any location attribute in
the	fact	schema.	To	avoid	redundancy,	the	DFM	provides	a	graphical	shorthand	for	
denoting	hierarchy	sharing.	Figure	4	shows	two	examples	of	shared	hierarchies.	Fact	
INVOICE LINE	has	two	date	dimensions,	with	semantics invoice date	and	order	date,	

Figure 5. The fact schema for the SALES fact

�4 Rizzi

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

respectively.	This	is	denoted	by	doubling	the	circle	that	represents	attribute	date	
and	specifying	two	roles	invoice	and	order	on	the	entering	arcs.	The	second	shared	
hierarchy	is	the	one	on	agent,	that	may	have	two	roles:	the	ordering	agent,	that	is	a	
dimension,	and	the	agent	who	is	responsible	for	a	customer	(optional).

Guideline.8:	Explicitly	representing	shared	hierarchies	on	the	fact	schema	
is	important	since,	during	ROLAP	logical	design,	it	enables	ad	hoc	solu-
tions	aimed	at	avoiding	replication	of	data	in	dimension	tables.

Ragged.Hierarchies

Let	a1,...,	an be a sequence of dimension attributes that define a path within a hier-
archy	(such	as	city,	state,	nat�on).	Up	to	now	we	assumed	that,	for	each	value	of	a1,	
exactly	one	value	for	every	other	attribute	on	the	path	exists.	In	the	previous	case,	
this	is	actually	true	for	each	city	in	the	U.S.,	while	it	is	false	for	most	European	
countries where no decomposition in states is defined (see Figure 6).

Definition 13: A	ragged (or	incomplete) hierarchy	is	a	hierarchy	where,	for	some	
instances, the values of one or more attributes are missing (since undefined or un-
known).	A	ragged	hierarchy	is	graphically	denoted	by	marking	with	a	dash	the	at-
tributes	whose	values	may	be	missing.

As	stated	by	Niemi	(2001),	within	a	ragged	hierarchy	each	aggregation	level	has	
precise	and	consistent	semantics,	but	the	different	hierarchy	instances	may	have	
different	length	since	one	or	more	levels	are	missing,	making	the	interlevel	relation-
ships	not	uniform	(the	father	of	“San	Francisco”	belongs	to	level	state,	the	father	
of	“Rome”	to	level	nat�on).
There	is	a	noticeable	difference	between	a	ragged	hierarchy	and	an	optional	arc.	In	
the first case we model the fact that, for some hierarchy instances, there is no value
for	one	or	more	attributes	in any position of the hierarchy.	Conversely,	through	an	

Figure 6. Ragged geographic hierarchies

Conceptual Modeling Solutions for the Data Warehouse ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

optional	arc	we	model	the	fact	that	there	is	no	value	for	an	attribute	and for all of
its descendents.

Guideline.9:.Ragged	hierarchies	may	lead	to	summarizability	problems.	
A	way	for	avoiding	them	is	to	fragment	a	fact	into	two	or	more	facts,	each	
including	a	subset	of	the	hierarchies	characterized	by	uniform	interlevel	
relationships.

Thus,	in	the	invoice	example,	fragmenting	 INVOICE LINE	into	U.S. INVOICE LINE
and	E.U. INVOICE LINE (the first with the state	attribute,	the	second	without	state)	
restores	the	completeness	of	the	geographic	hierarchy.

Unbalanced Hierarchies

Definition 14: An	unbalanced	 (or	recursive)	hierarchy	 is	 a	hierarchy	
where,	 though	 interattribute	 relationships	are	consistent,	 the	 instances	
may	have	different	length.	Graphically,	it	is	represented	by	introducing	
a	cycle	within	the	hierarchy.

A	typical	example	of	unbalanced	hierarchy	is	the	one	that	models	the	dependence	
interrelationships	between	working	persons.	Figure	4	includes	an	unbalanced	hierar-
chy on sale agents: there are no fixed roles for the different agents, and the different
“leaf”	agents	have	a	variable	number	of	supervisor	agents	above	them.

Guideline.10:.Recursive	hierarchies	lead	to	complex	solutions	during	
ROLAP	 logical	design	 and	 to	poor	querying	performance.	A	way	 for	
avoiding	them	is	to	“unroll”	them	for	a	given	number	of	times.

For	instance,	in	the	agent	example,	if	the	user	states	that	two	is	the	maximum	number	
of	interesting	levels	for	the	dependence	relationship,	the	customer	hierarchy	could	
be	transformed	as	in	Figure	7.

Dynamic.Hierarchies

Time	is	a	key	factor	in	data	warehousing	systems,	since	the	decision	process	is	often	
based	on	the	evaluation	of	historical	series	and	on	the	comparison	between	snapshots	
of	the	enterprise	taken	at	different	moments.	The	multidimensional	models	implicitly	
assume	that	the	only	dynamic	components	described	in	a	cube	are	the	events	that	

�6 Rizzi

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

instantiate	it;	hierarchies	are	traditionally	considered	to	be	static.	Of	course	this	is	
not	correct:	sales	manager	alternate,	though	slowly,	on	different	departments;	new	
products	are	added	every	week	to	those	already	being	sold;	the	product	categories	
change, and their relationship with products change; sales districts can be modified,
and	a	customer	may	be	moved	from	one	district	to	another.1

The	conceptual	representation	of	hierarchy	dynamicity	is	strictly	related	to	its	impact	
on	user	queries.	In	fact,	in	presence	of	a	dynamic	hierarchy	we	may	picture	three	
different	temporal	scenarios	for	analyzing	events	(SAP,	1998):

•. Today. for. yesterday: All events are referred to the current configuration
of	hierarchies.	Thus,	assuming	on	January	1,	2005	the	responsible	agent	for	
customer	Smith	has	changed	from	Mr.	Black	to	Mr.	White,	and	that	a	new	
customer	O’Hara	has	been	acquired	and	assigned	to	Mr.	Black,	when	comput-
ing	the	agent	commissions	all	invoices	for	Smith	are	attributed	to	Mr.	White,	
while	only	invoices	for	O’Hara	are	attributed	to	Mr.	Black.

•. Yesterday.for.today: All events are referred to some past configuration of
hierarchies.	In	the	previous	example,	all	invoices	for	Smith	are	attributed	to	
Mr.	Black,	while	invoices	for	O’Hara	are	not	considered.

•. Today.or.yesterday.(or.historical.truth):	Each	event	is	referred	to	the	con-
figuration hierarchies had at the time the event occurred. Thus, the invoices
for	Smith	up	to	2004	and	those	for	O’Hara	are	attributed	to	Mr.	Black,	while	
invoices	for	Smith	from	2005	are	attributed	to	Mr.	White.

While	in	the	agent	example,	dynamicity	concerns	an	arc	of	a	hierarchy,	the	one	
expressing	the	many-to-one	association	between	customer	and	agent,	in	some	cases	
it	may	as	well	concern	a	dimension	attribute:	for	instance,	the	name	of	a	product	
category may change. Even in this case, the different scenarios are defined in much
the	same	way	as	before.
On	the	conceptual	schema,	it	is	useful	to	denote	which	scenarios	the	user	is	interested	
for each arc and attribute, since this heavily impacts on the specific solutions to be
adopted	during	logical	design.	By	default,	we	will	assume	that	the	only	interesting	
scenario	is	today	for	yesterday—it	is	the	most	common	one,	and	the	one	whose	

Figure 7. Unrolling the agent hierarchy

Conceptual Modeling Solutions for the Data Warehouse ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

implementation	on	the	star	schema	is	simplest.	If	some	attributes	or	arcs	require	
different	scenarios,	the	designer	should	specify	them	on	a	table	like	Table	2.

Additivity

Aggregation requires defining a proper operator to compose the measure values
characterizing	primary	events	into	measure	values	characterizing	each	secondary	
event.	From	this	point	of	view,	we	may	distinguish	three	types	of	measures	(Lenz	
&	Shoshani,	1997):

•. Flow.measures:.They	refer	to	a	time	period,	and	are	cumulatively	evaluated	
at	the	end	of	that	period.	Examples	are	the	number	of	products	sold	in	a	day,	
the	monthly	revenue,	the	number	of	those	born	in	a	year.

•. Stock.measures:	They	are	evaluated	at	particular	moments	in	time.	Examples	
are	the	number	of	products	in	a	warehouse,	the	number	of	inhabitants	of	a	city,	
the	temperature	measured	by	a	gauge.

•. Unit.measures:	They	are	evaluated	at	particular	moments	in	time,	but	they	
are	expressed	in	relative	terms.	Examples	are	the	unit	price	of	a	product,	the	
discount	percentage,	the	exchange	rate	of	a	currency.

The	aggregation	operators	that	can	be	used	on	the	three	types	of	measures	are	sum-
marized	in	Table	3.

arc/attribute today	for	yesterday yesterday	for	today today	or	yesterday

customer-resp. agent YES YES YES

customer-city YES YES

sale district YES

Table 2. Temporal scenarios for the INVOICE fact

temporal	hierarchies nontemporal	hierarchies

flow measures SUM,	AVG,	MIN,	MAX SUM,	AVG,	MIN,	MAX

stock	measures AVG,	MIN,	MAX SUM,	AVG,	MIN,	MAX

unit	measures AVG,	MIN,	MAX AVG,	MIN,	MAX

Table 3. Valid aggregation operators for the three types of measures (Lenz, 1997)

�8 Rizzi

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Definition 15:	A	measure	is	said	to	be	additive	along	a	dimension	if	its	
values	can	be	aggregated	along	the	corresponding	hierarchy	by	the	sum	
operator,	otherwise	 it	 is	 called	nonadditive.	A	nonadditive	measure	 is	
nonaggregable	if	no	other	aggregation	operator	can	be	used	on	it.

Table 3 shows that, in general, flow measures are additive along all dimensions,
stock	measures	are	nonadditive	along	temporal	hierarchies,	and	unit	measures	are	
nonadditive	along	all	dimensions.
On	the	invoice	scheme,	most	measures	are	additive.	For	instance,	quantity has flow
type:	the	total	quantity	invoiced	in	a	month	is	the	sum	of	the	quantities	invoiced	in	
the	single	days	of	that	month.	Measure	unit price	has	unit	type	and	is	nonadditive	
along	all	dimensions.	Though	it	cannot	be	summed	up,	it	can	still	be	aggregated	by	
using	operators	such	as	average,	maximum,	and	minimum.
Since	additivity	is	the	most	frequent	case,	in	order	to	simplify	the	graphic	notation	in	
the	DFM,	only	the	exceptions	are	represented	explicitly.	In	particular,	a	measure	is	
connected	to	the	dimensions	along	which	it	is	nonadditive	by	a	dashed	line	labeled	
with	the	other	aggregation	operators	(if	any)	which	can	be	used	instead.	If	a	measure	
is	aggregated	through	the	same	operator	along	all	dimensions,	that	operator	can	be	
simply	reported	on	its	side	(see	for	instance unit price	in	Figure	4).

Approaches. to.Conceptual.Design

In	this	section	we	discuss	how	conceptual	design	can	be	framed	within	a	method-
ology for DW design. The approaches to DW design are usually classified in two
categories	(Winter	&	Strauch,	2003):

•	 Data-driven	(or	supply-driven)	approaches	that	design	the	DW	starting	from	
a	detailed	analysis	of	the	data	sources;	user	requirements	impact	on	design	by	
allowing	the	designer	to	select	which	chunks	of	data	are	relevant	for	decision	
making	and	by	determining	their	structure	according	to	the	multidimensional	
model	(Golfarelli	et	al.,	1998;	Hüsemann	et	al.,	2000).	

•	 Requirement-driven	(or	demand-driven)	approaches	start	from	determining	
the	information	requirements	of	end	users,	and	how	to	map	these	requirements	
onto	the	available	data	sources	is	investigated	only	a posteriori	(Prakash	&	
Gosain,	2003;	Schiefer,	List	&	Bruckner,	2002).

While	data-driven	approaches	somehow	simplify	the	design	of	ETL	(extraction,	trans-
formation,	and	loading),	since	each	data	in	the	DW	is	rooted	in	one	or	more	attributes	

Conceptual Modeling Solutions for the Data Warehouse ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

of	the	sources,	they	give	user	requirements	a	secondary	role	in	determining	the	infor-
mation	contents	for	analysis,	and	give	the	designer	little	support	in	identifying	facts,	
dimensions,	and	measures.	Conversely,	requirement-driven	approaches	bring	user	
requirements	to	the	foreground,	but	require	a	larger	effort	when	designing	ETL.

Data-Driven.Approaches

Data-driven	approaches	are	feasible	when	all	of	the	following	are	true:	(1)	detailed	
knowledge	of	data	sources	is	available	a priori	or	easily	achievable;	(2)	the	source	
schemata	 exhibit	 a	 good	degree	of	 normalization;	 (3)	 the	 complexity	of	 source	
schemata	is	not	high.	In	practice,	when	the	chosen	architecture	for	the	DW	relies	
on	a	reconciled level	(or	operational data store)	these	requirements	are	largely	sat-
isfied: in fact, normalization and detailed knowledge are guaranteed by the source
integration	process.	The	same	holds,	thanks	to	a	careful	source	recognition	activity,	
in	the	frequent	case	when	the	source	is	a	single	relational	database,	well-designed	
and	not	very	large.
In	a	data-driven	approach,	requirement	analysis	is	typically	carried	out	informally,	
based	on	simple	requirement	glossaries	(Lechtenbörger,	2001)	rather	than	on	formal	
diagrams.	Conceptual	design	is	then	heavily	rooted	on	source	schemata	and	can	be	
largely	automated.	In	particular,	the	designer	is	actively	supported	in	identifying	
dimensions	and	measures,	in	building	hierarchies,	in	detecting	convergences	and	
shared	hierarchies.	For	instance,	the	approach	proposed	by	Golfarelli	et	al.	(1998)	
consists of five steps that, starting from the source schema expressed either by an
E/R	schema	or	a	relational	schema,	create	the	conceptual	schema	for	the	DW:

1.		 Choose	facts	of	interest	on	the	source	schema
2.		 For	each	fact,	build	an	attribute tree	that	captures	the	functional	dependencies	

expressed	by	the	source	schema
3.		 Edit	the	attribute	trees	by	adding/deleting	attributes	and	functional	dependencies
4.		 Choose	dimensions	and	measures
5.		 Create	the	fact	schemata

While	step	2	is	completely	automated,	some	advanced	constructs	of	the	DFM	are	
manually	applied	by	the	designer	during	step	5.
On-the-field experience shows that, when applicable, the data-driven approach is
preferable	since	it	reduces	the	overall	time	necessary	for	design.	In	fact,	not	only	
conceptual	design	can	be	partially	automated,	but	even	ETL	design	is	made	easier	
since	the	mapping	between	the	data	sources	and	the	DW	is	derived	at	no	additional	
cost	during	conceptual	design.

20 Rizzi

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Requirement-Driven.Approaches

Conversely,	within	a	requirement-driven	framework,	in	the	absence	of	knowledge	
of	the	source	schema,	the	building	of	hierarchies	cannot	be	automated;	the	main	
assurance	of	a	satisfactory	result	is	the	skill	and	experience	of	the	designer,	and	the	
designer’s	ability	to	interact	with	the	domain	experts.	In	this	case	it	may	be	worth	
adopting	formal	techniques	for	specifying	requirements	in	order	to	more	accurately	
capture	users’	needs;	for	instance,	the	goal-oriented	approach	proposed	by	Giorgini,	
Rizzi,	and	Garzetti	(2005)	is	based	on	an	extension	of	the	Tropos	formalism	and	
includes	the	following	steps:	

1.		 Create,	in	the	Tropos	formalism,	an	organizational model	that	represents	the	
stakeholders,	their	relationships,	their	goals	as	well	as	the	relevant	facts	for	
the	organization	and	the	attributes	that	describe	them.

2.		 Create,	in	the	Tropos	formalism,	a	decisional model	that	expresses	the	analysis	
goals	of	decision	makers	and	their	information	needs.

3.		 Create	preliminary	fact	schemata	from	the	decisional	model.
4.		 Edit	the	fact	schemata,	for	instance,	by	detecting	functional	dependencies	be-

tween	dimensions,	recognizing	optional	dimensions,	and	unifying	measures	
that	only	differ	for	the	aggregation	operator.

This approach is, in our view, more difficult to pursue than the previous one. Neverthe-
less,	it	is	the	only	alternative	when	a	detailed	analysis	of	data	sources	cannot	be	made	
(for	instance,	when	the	DW	is	fed	from	an	ERP	system),	or	when	the	sources	come	
from	legacy	systems	whose	complexity	discourages	recognition	and	normalization.

Mixed.Approaches

Finally,	also	a	few	mixed approaches	to	design	have	been	devised,	aimed	at	joining	
the	facilities	of	data-driven	approaches	with	the	guarantees	of	requirement-driven	
ones	(Bonifati,	Cattaneo,	Ceri,	Fuggetta,	&	Paraboschi,	2001;	Giorgini	et	al.,	2005).	
Here	the	user	requirements,	captured	by	means	of	a	goal-oriented	formalism,	are	
matched	with	the	schema	of	the	source	database	to	drive	the	algorithm	that	gener-
ates	the	conceptual	schema	for	the	DW.	For	instance,	the	approach	proposed	by	
Giorgini	et	al.	(2005)	encompasses	three	phases:

1.		 Create,	in	the	Tropos	formalism,	an	organizational model	that	represents	the	
stakeholders,	their	relationships,	their	goals,	as	well	as	the	relevant	facts	for	
the	organization	and	the	attributes	that	describe	them.

Conceptual Modeling Solutions for the Data Warehouse 2�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

2.		 Create,	in	the	Tropos	formalism,	a	decisional model	that	expresses	the	analysis	
goals	of	decision	makers	and	their	information	needs.

3. Map facts, dimensions, and measures identified during requirement analysis
onto	entities	in	the	source	schema.	

4.		 Generate	a	preliminary	conceptual	schema	by	navigating	the	functional	de-
pendencies	expressed	by	the	source	schema.

5.		 Edit	the	fact	schemata	to	fully	meet	the	user	expectations.

Note	that,	though	step	4	may	be	based	on	the	same	algorithm	employed	in	step	2	
of	the	data-driven	approach,	here	navigation	is	not	“blind”	but	rather	it	is	actively	
biased	by	the	user	requirements.	Thus,	the	preliminary	fact	schemata	generated	here	
may	be	considerably	simpler	and	smaller	than	those	obtained	in	the	data-driven	ap-
proach.	Besides,	while	in	that	approach	the	analyst	is	asked	for	identifying	facts,	
dimensions, and measures directly on the source schema, here such identification
is	driven	by	the	diagrams	developed	during	requirement	analysis.
Overall,	the	mixed	framework	is	recommendable	when	source	schemata	are	well-
known	but	their	size	and	complexity	are	substantial.	In	fact,	the	cost	for	a	more	
careful	and	formal	analysis	of	requirement	is	balanced	by	the	quickening	of	con-
ceptual	design.

Open. Issues

A lot of work has been done in the field of conceptual modeling for DWs; never-
theless	some	very	important	issues	still	remain	open.	We	report	some	of	them	in	
this	section,	as	they	emerged	during	joint	discussion	at	the	Perspective Seminar on
“Data Warehousing at the Crossroads”	that	took	place	at	Dagstuhl,	Germany	on	
August	2004.

•	 Lack. of. a. standard:	 Though	 several	 conceptual	 models	 have	 been	 pro-
posed,	none	of	them	has	been	accepted	as	a	standard	so	far,	and	all	vendors	
propose	their	own	proprietary	design	methods.	We	see	two	main	reasons	for	
this:	(1)	though	the	conceptual	models	devised	are	semantically	rich,	some	of	
the	modeled	properties	cannot	be	expressed	in	the	target	logical	models,	so	
the	translation	from	conceptual	to	logical	is	incomplete;	and	(2)	commercial	
CASE	tools	currently	enable	designers	to	directly	draw	logical	schemata,	thus	
no industrial push is given to any of the models. On the other hand, a unified
conceptual	model	for	DWs,	implemented	by	sophisticated	CASE	tools,	would	
be	a	valuable	support	for	both	the	research	and	industrial	communities.

�� R�zz�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

•	 Design.patterns:.In	software	engineering,	design	patterns	are	a	precious	sup-
port	for	designers	since	they	propose	standard	solutions	to	address	common	
modeling	problems.	Recently,	some	preliminary	attempts	have	been	made	to	
identify	relevant	patterns	for	multidimensional	design,	aimed	at	assisting	DW	
designers	during	their	modeling	tasks	by	providing	an	approach	for	recogniz-
ing	dimensions	in	a	systematic	and	usable	way	(Jones	&	Song,	2005).	Though	
we agree that DW design would undoubtedly benefit from adopting a pattern-
based	approach,	and	we	also	recognize	the	utility	of	patterns	in	increasing	the	
effectiveness	of	teaching	how	to	design,	we	believe	that	further	research	is	
necessary	in	order	to	achieve	a	more	comprehensive	characterization	of	mul-
tidimensional	patterns	for	both	conceptual	and	logical	design.

•	 Modeling.security:	Information	security	is	a	serious	requirement	that	must	be	
carefully	considered	in	software	engineering,	not	in	isolation	but	as	an	issue	
underlying	all	stages	of	the	development	life	cycle,	from	requirement	analysis	
to	implementation	and	maintenance.	The	problem	of	information	security	is	
even	bigger	in	DWs,	as	these	systems	are	used	to	discover	crucial	business	
information	 in	 strategic	 decision	 making.	 Some	 approaches	 to	 security	 in	
DWs,	focused,	for	instance,	on	access	control	and	multilevel	security,	can	be	
found	in	the	literature	(see,	for	instance,	Priebe	&	Pernul,	2000),	but	neither	
of	them	treats	security	as	comprising	all	stages	of	the	DW	development	cycle.	
Besides,	the	classical	security	model	used	in	transactional	databases,	centered	
on	tables,	rows,	and	attributes,	is	unsuitable	for	DW	and	should	be	replaced	by	
an	ad	hoc	model	centered	on	the	main	concepts	of	multidimensional	model-
ing—such	as	facts,	dimensions,	and	measures.

•	 Modeling.ETL:.ETL	is	a	cornerstone	of	the	data	warehousing	process,	and	its	
design	and	implementation	may	easily	take	50%	of	the	total	time	for	setting	up	
a	DW.	In	the	literature	some	approaches	were	devised	for	conceptual	modeling	
of	the	ETL	process	from	either	the	functional	(Vassiliadis,	Simitsis,	&	Skia-
dopoulos,	2002),	the	dynamic	(Bouzeghoub,	Fabret,	&	Matulovic,	1999),	or	
the	static	(Calvanese,	De	Giacomo,	Lenzerini,	Nardi,	&	Rosati,	1998)	points	
of	view.	Recently,	also	some	interesting	work	on	translating	conceptual	into	
logical	ETL	schemata	has	been	done	(Simitsis,	2005).	Nevertheless,	issues	
such	as	the	optimization	of	ETL	logical	schemata	are	not	very	well	understood.	
Besides,	there	is	a	need	for	techniques	that	automatically	propagate	changes	
occurred	in	the	source	schemas	to	the	ETL	process.

Conclusion

In	this	chapter	we	have	proposed	a	set	of	solutions	for	conceptual	modeling	of	a	DW	
according	to	the	DFM.	Since	1998,	the	DFM	has	been	successfully	adopted,	in	real	

Conceptual Modeling Solutions for the Data Warehouse 2�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

DW projects mainly in the fields of retail, large distribution, telecommunications,
health,	justice,	and	instruction,	where	it	has	proved	expressive	enough	to	capture	
a	wide	variety	of	modeling	situations.	Remarkably,	in	most	projects	the	DFM	was	
also	used	to	directly	support	dialogue	with	end	users	aimed	at	validating	require-
ments,	and	to	express	the	expected	workload	for	the	DW	to	be	used	for	logical	and	
physical	design.	This	was	made	possible	by	the	adoption	of	a	CASE	tool	named	
WAND (warehouse	integrated	designer),	entirely	developed	at	the	University	of	
Bologna,	that	assists	the	designer	in	structuring	a	DW.	WAND	carries	out	data-driven	
conceptual	design	in	a	semiautomatic	fashion	starting	from	the	logical	scheme	of	
the source database (see Figure 8), allows for a core workload to be defined on the
conceptual	scheme,	and	carries	out	workload-based	logical	design	to	produce	an	
optimized	relational	scheme	for	the	DW	(Golfarelli	&	Rizzi,	2001).
Overall, our on-the-field experience confirmed that adopting conceptual modeling
within	a	DW	project	brings	great	advantages	since:

• Conceptual schemata are the best support for discussing, verifying, and refining
user specifications since they achieve the optimal trade-off between expres-
sivity	and	clarity.	Star	schemata	could	hardly	be	used	to	this	purpose.

•	 For	the	same	reason,	conceptual	schemata	are	an	irreplaceable	component	of	
the	documentation	for	the	DW	project.

•	 They	provide	a	 solid	and	platform-independent	 foundation	 for	 logical	 and	
physical	design.

•	 They	are	an	effective	support	for	maintaining	and	extending	the	DW.
•	 They	make	turn-over	of	designers	and	administrators	on	a	DW	project	quicker	

and	simpler.

Figure 8. Editing a fact schema in WAND

�� R�zz�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

References

Abelló, A., Samos, J., & Saltor, F. (2002, July 17-19). YAM2 (Yet another multidi-
mensional	model):	An	extension	of	UML.	In	Proceedings of the International
Database Engineering & Applications Symposium	(pp.	172-181).	Edmonton,	
Canada.

Agrawal,	R.,	Gupta,	A.,	&	Sarawagi,	S.	(1995).	Modeling multidimensional databases	
(IBM	Research	Report).	IBM	Almaden	Research	Center,	San	Jose,	CA.

Bonifati,	A.,	Cattaneo,	F.,	Ceri,	S.,	Fuggetta,	A.,	&	Paraboschi,	S.	(2001).	Designing	
data	marts	for	data	warehouses.	ACM Transactions on Software Engineering
and Methodology,	10(4),	452-483.

Bouzeghoub,	M.,	Fabret,	F.,	&	Matulovic,	M.	(1999).	Modeling	data	warehouse	
refreshment process as a workflow application. In Proceedings of the Inter-
national Workshop on Design and Management of Data Warehouses,	Heidel-
berg,	Germany.

Cabibbo,	L.,	&	Torlone,	R.	(1998,	March	23-27).	A	logical	approach	to	multidimen-
sional	databases.	In	Proceedings of the International Conference on Extending
Database Technology (pp.	183-197).	Valencia,	Spain.

Calvanese,	D.,	De	Giacomo,	G.,	Lenzerini,	M.,	Nardi,	D.,	&	Rosati,	R.	(1998,	August	
20-22).	Information	integration:	Conceptual	modeling	and	reasoning	support.	
In	Proceedings of the International Conference on Cooperative Information
Systems (pp.	280-291).	New	York.

Datta,	A.,	&	Thomas,	H.	(1997).	A	conceptual	model	and	algebra	for	on-line	ana-
lytical	processing	 in	data	warehouses.	 In	Proceedings of the Workshop for
Information Technology and Systems	(pp.	91-100).

Fahrner,	C.,	&	Vossen,	G.	(1995).	A	survey	of	database	transformations	based	on	the	
entity-relationship	model.	Data & Knowledge Engineering,	15(3),	213-250.

Franconi,	E.,	&	Kamble,	A.	(2004a,	June	7-11).	The	GMD	data	model	and	algebra	
for	multidimensional	information.	In	Proceedings of the Conference on Ad-
vanced Information Systems Engineering	(pp.	446-462).	Riga,	Latvia.

Franconi,	E.,	&	Kamble,	A.	(2004b).	A	data	warehouse	conceptual	data	model.	In	
Proceedings of the International Conference on Statistical and Scientific Da-
tabase Management	(pp.	435-436).

Giorgini,	P.,	Rizzi,	S.,	&	Garzetti,	M.	(2005,	November	4-5).	Goal-oriented	requirement	
analysis	for	data	warehouse	design.	In	Proceedings of the ACM International
Workshop on Data Warehousing and OLAP	(pp.	47-56).	Bremen,	Germany.

Golfarelli,	M.,	Maio,	D.,	&	Rizzi,	S.	(1998).	The	dimensional	fact	model:	A	con-
ceptual	 model	 for	 data	 warehouses.	 International Journal of Cooperative
Information Systems,	7(2-3),	215-247.

Conceptual Modeling Solutions for the Data Warehouse 2�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Golfarelli,	M.,	&	Rizzi,	S.	(2001,	April	2-6).	WAND:	A	CASE	tool	for	data	ware-
house	design.	In	Demo Proceedings of the International Conference on Data
Engineering	(pp.	7-9).	Heidelberg,	Germany.

Gyssens,	M.,	&	Lakshmanan,	L.	V.	S.	(1997).	A	foundation	for	multi-dimensional	
databases.	In	Proceedings of the International Conference	on Very Large Data
Bases	(pp.	106-115),	Athens,	Greece.

Hüsemann,	B.,	Lechtenbörger,	J.,	&	Vossen,	G.	(2000).	Conceptual	data	warehouse	
design.	In	Proceedings of the International Workshop on Design and Manage-
ment of Data Warehouses,	Stockholm,	Sweden.

Jones,	M.	E.,	&	Song,	I.	Y.	(2005).	Dimensional	modeling:	Identifying,	classifying	
&	applying	patterns.	In	Proceedings of the ACM International Workshop on
Data Warehousing and OLAP	(pp.	29-38).	Bremen,	Germany.

Kimball,	R.	(1996).	The data warehouse toolkit.	New	York:	John	Wiley	&	Sons.
Lechtenbörger	 ,	J.	 (2001).	Data warehouse schema design (Tech.	Rep.	No.	79).	

DISDBIS	Akademische	Verlagsgesellschaft	Aka	GmbH,	Germany.
Lenz,	H.	J.,	&	Shoshani,	A.	(1997).	Summarizability	in	OLAP	and	statistical	data-

bases.	In	Proceedings of the 9th International Conference on Statistical and
Scientific Database Management	(pp.	132-143).	Washington,	DC.

Li,	 C.,	 &	 Wang,	 X.	 S.	 (1996).	A	 data	 model	 for	 supporting	 on-line	 analytical	
processing.	In	Proceedings of the International Conference on Information
and Knowledge Management	(pp.	81-88).	Rockville,	Maryland.

Luján-Mora,	S.,	Trujillo,	J.,	&	Song,	I.	Y.	(2002).	Extending	the	UML	for	multidi-
mensional	modeling.	In	Proceedings of the International Conference on the
Unified Modeling Language	(pp.	290-304).	Dresden,	Germany.

Niemi,	T.,	Nummenmaa,	J.,	&	Thanisch,	P.	(2001,	June	4).	Logical	multidimensional	
database	design	for	ragged	and	unbalanced	aggregation.	Proceedings of the
3rd International Workshop on Design and Management of Data Warehouses,
Interlaken,	Switzerland (p.	7).	

Nguyen,	T.	B.,	Tjoa,	A.	M.,	&	Wagner,	R.	(2000).	An	object-oriented	multidimen-
sional	data	model	for	OLAP.	In	Proceedings of the International Conference
on Web-Age Information Management	(pp.	69-82).	Shanghai,	China.

Pedersen,	T.	B.,	&	Jensen,	C.	(1999).	Multidimensional	data	modeling	for	complex	
data.	In	Proceedings of the International Conference on Data Engineering	(pp.	
336-345).	Sydney,	Austrialia.

Prakash,	N.,	&	Gosain,	A.	(2003).	Requirements	driven	data	warehouse	develop-
ment.	In	Proceedings of the Conference on Advanced Information Systems
Engineering—Short Papers,	Klagenfurt/Velden,	Austria.

Priebe,	T.,	&	Pernul,	G.	(2000).	Towards	OLAP	security	design:	Survey	and	re-
search	issues.	In	Proceedings of the ACM International Workshop on Data
Warehousing and OLAP	(pp.	33-40).	Washington,	DC.

�� R�zz�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

SAP.	(1998).	Data modeling with BW.	SAP	America	Inc.	and	SAP	AG,	Rockville,	
MD.

Sapia, C., Blaschka, M., Hofling, G., & Dinter, B. (1998). Extending the E/R model
for	the	multidimensional	paradigm.	In	Proceedings of the International Con-
ference on Conceptual Modeling,	Singapore.

Schiefer,	 J.,	List,	B.,	&	Bruckner,	R.	 (2002).	A	holistic	 approach	 for	managing	
requirements	 of	 data	 warehouse	 systems.	 In	 Proceedings of the Americas
Conference on Information Systems.

Sen,	A.,	&	Sinha,	A.	P.	(2005).	A	comparison	of	data	warehousing	methodologies.	
Communications of the ACM,	48(3),	79-84.

Simitsis,	A.	(2005).	Mapping	conceptual	to	logical	models	for	ETL	processes.	In	
Proceedings of the ACM International Workshop on Data Warehousing and
OLAP (pp.	67-76).	Bremen,	Germany.

Tryfona,	N.,	Busborg,	F.,	&	Borch	Christiansen,	J.	G.	(1999).	starER:	A	conceptual	
model	for	data	warehouse	design.	In	Proceedings of the ACM International
Workshop on Data Warehousing and OLAP, Kansas	City,	Kansas	(pp.	3-8).

Tsois,	A.,	Karayannidis,	N.,	&	Sellis,	T.	(2001).	MAC:	Conceptual	data	modeling	
for	OLAP.	In	Proceedings of the International Workshop on Design and Man-
agement of Data Warehouses	(pp.	5.1-5.11).	Interlaken,	Switzerland.

Vassiliadis,	P.	(1998).	Modeling	multidimensional	databases,	cubes	and	cube	opera-
tions.	In	Proceedings of the 10th International Conference on Statistical and
Scientific Database Management,	Capri,	Italy.

Vassiliadis,	P.,	Simitsis,	A.,	&	Skiadopoulos,	S.	(2002,	November	8).	Conceptual	
modeling	for	ETL	processes.	In	Proceedings of the ACM International Work-
shop on Data Warehousing and OLAP	(pp.	14-21).	McLean,	VA.

Winter,	R.,	&	Strauch,	B.	(2003).	A	method	for	demand-driven	information	require-
ments	analysis	in	data	warehousing	projects.	In	Proceedings of the Hawaii
International Conference on System Sciences, Kona	(pp.	1359-1365).

Endnote

1	 In	this	chapter	we	will	only	consider	dynamicity	at	the	instance	level.	Dy-
namicity	at	the	schema	level	is	related	to	the	problem	of	evolution	of	DWs	
and	is	outside	the	scope	of	this	chapter.

Handling Structural Heterogeneity in OLAP 2�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Chapter.II

Handling.Structural.
Heterogeneity.in.OLAP

Carlos A. Hurtado
Universidad de Chile, Chile

Claudio Gutierrez
Universidad de Chile, Chile

Abstract

Structural heterogeneous OLAP data arise when several OLAP dimensions with
different structures are mixed into a single OLAP dimension. In this chapter, we
examine the problems encountered when handling structural heterogeneity in OLAP
and survey techniques that have been proposed to solve them. We show how to in-
corporate structural heterogeneity in the design of OLAP models. We explain why
structural heterogeneity weakens aggregate navigation, the framework that guides
users to formulate correct OLAP operations and systems to efficiently process them.
We survey different techniques to deal with heterogeneity, including the modeling
of heterogeneity by unbalanced dimensions, the solution proposed by Kimball, and
the use of null elements to fix heterogeneity. Finally, we present a class of integrity
constraints to model structural heterogeneity, called dimension constraints, intro-
duced in previous work of the authors. We show the practical application of dimen-
sion constraints to support aggregate navigation and some of the aforementioned
techniques for dealing with the problem.

28 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Introduction

Much	of	the	success	of	OLAP	can	be	attributed	to	the	intuitive	approach	to	data	vi-
sualization	provided	by	the	multidimensional	data	model.	Nowadays,	the	notions	of	
facts	and	dimensions	have	been	largely	disseminated	among	database	practitioners	
and	researchers	and	have	been	proved	to	be	useful	metaphors	to	support	querying	
data	for	decision	support.	The	simplicity	of	the	multidimensional	model,	however,	
stands	on	some	assumptions	about	 the	regularity	of	data	which	are	unnatural	 in	
many	applications.	In	this	chapter,	we	study	the	implications	of	relaxing	one	of	the	
cores	of	such	assumptions,	namely	the	homogeneity	of	the	structure	of	OLAP	di-
mensions.	Structurally	heterogeneous	OLAP	data	have	been	reported	in	the	OLAP	
literature	almost	since	the	origins	of	the	term	OLAP	itself	and	have	concentrated	
significant research work since then (Hurtado, Gutierrez, & Mendelzon, 2005; Huse-
man,	Lechtenborger,	&	Vossen,	2000;	Jagadish,	Lakshmanan,	&	Srivastava,	1999;	
Kimball,	 1996;	Lehner,	Albrecht,	&	Wedekind,	1998;	 	Malinowski	&	Zimanyi,	
2004;	Pedersen,	Jensen,	&	Dyreson,	2001).	

Motivation

In	the	multidimensional	data	model,	dimensions	represent	the	perspectives	upon	
which	data	is	viewed,	and	facts	represent	events	that	associate	points	of	such	dimen-
sions	to	measures.	For	example,	a	sale	of	a	particular	product	in	a	particular	store	
of	a	retail	chain	can	be	viewed	as	a	fact,	which	may	be	represented	as	a	point	in	a	
space	whose	dimensions	are	products,	stores,	and	time,	and	can	be	associated	with	
one or more measures such as price or profit.
The	phenomenon	we	study	in	this	chapter	is	related	to	OLAP	dimensions	and,	more	
precisely,	to	their	structure.	The	structure	of	a	dimension	is	modeled	as	a	hierarchy	
of	categories.	Each	category	represents	a	level	of	abstraction	upon	which	facts	are	
aggregated.	For	example,	 in	a	dimension	 that	models	 the	products	of	a	 retailer,	
shown	in	Figure	1,	we	have	a	category	Product	which	rolls	up	to	a	Brand	category,	
which	in	turn	rolls	up	to	the	top	category	All.	The	elements	of	the	dimensions	are	
grouped	 into	 the	categories	and	connected	by	a	child/parent	 relationship,	which	
yields	a	hierarchy	of	elements	which	parallels	the	hierarchy	of	categories.	Following	
terminology	from	Jagadish	et	al.	(1999)	and	from	Hurtado	et	al.	(2005),	we	refer	
to	the	hierarchies	of	categories	and	elements	respectively	as	hierarchy	schema	and	
hierarchy	domain.
Each	element	of	a	dimension	can	be	viewed	as	having	a	structure	on	its	own.	This	
structure	of	an	element	 is	 the	subgraph	of	 the	hierarchy	schema	induced	by	 the	
ancestors	of	 that	 element	 and	 their	 child/parent	 relationship.	 In	our	 example	of	
Figure	1,	the	Product	element	p1	has	the	entire	hierarchy	schema	as	structure,	and	

Handling Structural Heterogeneity in OLAP 2�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

the	Brand	element	b2	only	has	the	substructure	composed	by	the	categories	Brand	
and	All.	Nevertheless,	all	the	elements	in	the	same	category	have	the	same	struc-
ture	in	this	dimension.	In	this	sense	the	dimension	can	be	regarded	as	structurally	
homogeneous.
In	several	situations,	the	structure	of	the	elements	in	a	category	may	not	be	the	same.	
Dimensions	may	require	mixing	in	a	single	category	elements	representing	the	same	
conceptual	entity,	but	having	different	structure.	These	dimensions,	which	are	the	
focus	of	this	chapter,	have	been	called	non-covering	(Malinowsky	&	Zimanyi,	2004;	
Pedersen	et	al.,	2001),	structurally	heterogeneous	(Hurtado	&	Mendelzon,	2002;	
Hurtado	et	al.,	2005),	or	ragged	in	the	OLAP	industry.	
Kimball	(1996),	 modeling	 products	 of	 retailers,	 coined	 the	 term	 heterogeneous
products	to	refer	to	product	elements	that	exhibit	irregularities	in	their	dimension	
structure. As an example, he stated that virtually every financial services database
has	products	with	different	structures.	A	bank	could	easily	have	a	dozen	or	more	
product	 types	such	as	savings	account,	 time	deposit,	or	credit	card,	and	each	of	
them	may	have	its	own	set	of	categories	and	measures.	Similar	situations	arise	in	
other	application	domains	such	as	retail,	insurance,	subscription,	and	voyages	busi-
ness.	As	an	example,	consider	the	product	dimension	for	a	retail	warehouse	given	
in	Figure	2,	which	has	product	elements	with	different	structures.	Products	may	be	
musical	(e.g.,	CDs)	or	electrical	products	(e.g.,	speakers,	audio	systems).	The	elec-
trical	products	have	brands,	but	the	musical	do	not.	Similarly,	not	all	the	products	
are	sold	on	shelves	of	physical	stores,	since	the	retailer	has	an	e-commerce	site	

Figure 1. A homogeneous product dimension; (a) hierarchy schema; (b) hierarchy
domain

Note: To each category node in (a) correspond a set of element nodes in (b). This dimension is homogeneous; that
is, each element node has the same structure; their ancestors induce the same subgraph.

(A)

Product

Brand

Category

Department

All

(B)

b1 b2

d1

all

c1 c2

p1 p2 p3 p4

�0 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

where	some	products	are	offered.	Figure	3	shows	the	different	structures	mixed	in	
this	heterogeneous	version	of	a	product	dimension.	The	example	could	be	turned	
much	more	complex	if	we	consider	different	categories	and	attributes	associated	to	
electric	products	such	as	speakers,	video	systems,	and	so	on.	
In	a	relational	database	setting,	an	OLAP	dimension	can	be	viewed	as	a	set	of	tuples,	
whose	attributes	are	 the	categories	of	 the	hierarchy	schema.	In	particular,	 if	 the	

Figure 2. A heterogeneous product dimension; (a) hierarchy schema; (b) hierarchy
domain

Note: This dimension is heterogeneous; that is, there are element nodes with different structures. For example, the
element p1 and p6 belong to the same category but have different structures.	

	

(a
)

(b
)

Handling Structural Heterogeneity in OLAP ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

data	are	modeled	using	a	star	schema	(Kimball,	1996),	the	dimension	would	be	a	
single	table	having	a	tuple	for	each	leaf	element	in	its	hierarchy	domain.	One	may	
generalize	this	idea	and	think	of	an	element	as	a	tuple	composed	of	the	ancestor’s	
elements	and	their	attributes.	As	an	example,	the	element	p1		in	the	dimension	of	
Figure	1	produces	the	tuple:	

Figure 3. Different structures mixed in the heterogeneous dimension of Figure 2

	

�2 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

[Product:	p1,	Brand:	b1,	Category:	c1,	Department:	d1,	All:	all].

By viewing a dimension as a set of relational tuples, it is not difficult to realize
practical	situations	that	cause	structural	heterogeneity.	As	an	example,	the	problem	
may	arise	when	the	OLAP	server	extracts	tuples	from	more	than	one	table	having	
different	attributes.	In	addition,	a	table	itself	may	have	nonapplicable	attributes	or	
missing	values,	which	translate	into	non-applicable	attributes	for	the	corresponding	
elements	in	the	dimension.	As	an	example,	the	following	two	structurally	different	
tuples	arise	for	the	product	elements	p1	and	p6	in	the	dimension	of	Figure	2:

[Product:	p1,	Brand:	b1,	ElectricalCategory:	ec1,	All:	all],

[Product:	p6,	Shelf:	sh1,	MusicalCategory:	mc1,	All:	all].

The	nonapplicability	of	categories	is	not	the	only	situation	that	causes	structural	
heterogeneity.	A	difference	in	the	hierarchical	arrangement	of	the	categories	of	two	
elements	may	cause	heterogeneity.	As	an	example,	consider	the	product	dimension	
of	Figure	4.	The	two	different	structures	mixed	in	the	top	category	of	this	dimen-
sion	are	shown	in	Figure	5.	The	elements	p1,	p2,	p3,	p4	have	the	structure	shown	in	
the	left-hand	side	of	Figure	5,	and	the	element	p5	has	the	structure	of	the	right-hand	
side.	Notice	that	the	elements	have	the	same	set	of	categories	in	their	structures.	
A	homogeneous	model	for	this	dimension	can	be	obtained	simply	by	abstracting	
away	the	child/parent	relation	from	Brand	to	Category.	However,	the	heterogeneous	
version	models	an	underlying	hierarchy	path	from	some	products	via	some	brands	
to	some	categories,	which	can	be	of	interest	to	be	navigated	by	users	via	standard	
OLAP operations. As we will illustrate in further sections, the artificial flattening of
the	hierarchy	is	not	in	general	the	best	approach	to	handle	structural	irregularities.	
It	is	central	to	OLAP	systems	to	take	advantage	of	the	hierarchical	arrangement	of	
data	in	dimensions	at	the	query	formulation	and	query	processing	stages.
In	OLAP,	queries	are	essentially	views	that	aggregate	raw	facts	 to	a	granularity	
specified by a list of categories, called granularities, selected from a list of dimen-
sions.	The	central	technique	for	speeding	up	OLAP	query	processing	is	to	materi-
alize	(precompute)	some	aggregate	views	and	use	them	for	the	derivation	of	other	
aggregate	views,	using	operations	called	roll-up	operations.	Aggregate	navigation,	a	
central technique in OLAP, is the process of finding and testing correct derivations
of	aggregate	views	from	other	precomputed	aggregate	views	at	lower	granularities.	
Since	the	cost	of	computing	a	cube	view	is	essentially	linear	in	the	number	of	facts	
accessed	in	the	computation,	this	technique	can	speed	up	this	processing	by	a	factor	
which	can	be	up	to	several	orders	of	magnitude	in	real	scenarios	(Kimball,	1995).	
The	central	problem	caused	by	heterogeneity	is	the	obsolescence	of	the	framework	

Handling Structural Heterogeneity in OLAP ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

of	OLAP	aggregate	navigation	that	underlies	OLAP	systems,	which	yields	the	inef-
ficiency of computing the aggregate views always from the raw facts.

Content.

In	this	chapter,	we	show	how	to	incorporate	structural	heterogeneity	in	OLAP	data	
models.	We	explain	the	central	concepts	of	the	graph	model	proposed	in	previous	
work	(Hurtado	et	al.,	2005),	and	study	structural	heterogeneity	in	this	framework.	
We	explain	why	structural	heterogeneity	weakens	the	role	of	the	hierarchy	schemas	
in	supporting	aggregate	navigation,	and	in	helping	users	to	formulate	correct	OLAP	
operations. We also explain the implication of heterogeneity to star and snowflake
models.

Figure 4. A heterogeneous version of a product dimension; (a) hierarchy schema;
(b) hierarchy domain

Figure 5. Different structures mixed in a heterogeneous dimension of Figure 4

	

(a) (b)

	

�4 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

We	study	different	solutions	proposed	to	keep	the	ability	of	OLAP	systems	to	per-
form	aggregate	navigation	when	the	dimensions	are	structurally	heterogeneous.	We	
overview	the	modeling	of	heterogeneity	by	the	unbalanced	dimensions	of	Jagadish	
et	al.	(1999)	and	the	solution	proposed	by	Kimball	(1996).	We	also	explain	how	the	
irregularity of heterogeneous dimensions can be fixed with null elements, which is
the	approach	of	Pedersen,	Jensen,	and	Dyreson	(1999).	
The	solutions	have	in	common	that	heterogeneous	data	are	transformed	into	homo-
geneous	data;	thus	any	commercial	OLAP	system	may	be	used	to	handle	the	data.	
In	these	frameworks,	getting	rid	of	heterogeneity	becomes	a	problem	that	appears	
in	the	design	and	preprocessing	stage	of	OLAP	data.	We	explain	a	different	strategy	
to	approach	the	problem,	which	is	the	model	heterogeneity	at	the	schema	level	of	
the	dimensions	by	enriching	it	with	a	class	of	integrity	constraints	called	dimension	
constraints	 introduced	 in	previous	work	(Hurtado	&	Mendelzon,	2002;	Hurtado	
et	al.,	2005).	Dimension	constraints	are	Boolean	expressions	over	categories	and	
paths	of	them,	which	allow	stating	restrictions	on	the	structure	of	the	dimension	
elements.	We	explain	two	major	applications	of	dimension	constrains.	We	show	
the	role	dimension	constraints	play	in	supporting	transformations	of	heterogeneous	
dimensions	to	the	structural	adaptations.	We	also	explain	how	standard	OLAP	ag-
gregate	navigation	can	be	extended	to	heterogeneous	schemas	by	performing	infer-
ence	over	dimension	constraints.	
Finally,	we	present	the	conclusions	and	outline	open	problems.	

Structural.Heterogeneity

We	will	start	this	section	by	studying	dimensions,	facts,	cube	views,	and	data	cubes,	
which are the main notions in the multidimensional data model. We also define
structural	heterogeneity.	Then	we	will	explain	the	notion	of	aggregate	navigation	
and	the	problems	caused	by	heterogeneity.

Dimension.Modeling

In	this	section	we	introduce	a	model	of	OLAP	dimensions	presented	in	previous	work	
(Hurtado	et	al.,	2005),	which	considers	notions	from	previous	dimension	models	
(Cabibbo	&	Torlone,	1998;	Hurtado,	Mendelzon	&	Vaisman,	1999;	Jagadish	et	al.,	
1999)	and	formalizes	them	in	terms	of	basic	notions	of	graph	theory.	Basic	notions	
of	graph	theory	used	can	be	consulted	in	any	standard	graph	theory	book	(West,	
1996).	The	model	allows	heterogeneity,	among	other	features	not	encountered	in	
traditional	dimension	models.	By	“traditional”	we	refer	to	the	most	common	type	

Handling Structural Heterogeneity in OLAP ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

of	dimensions	that	appear	in	textbooks,	white	papers,	and	early	research	papers	on	
OLAP, first formalized by Cabbibo and Torleone (1998).

Hierarchy Schema

The	hierarchy	schema	is	the	standard	structure	for	representing	the	semantics	of	
OLAP	dimensions.	This	structure	is	common	to	different	models.	The	hierarchy	
schema	is	modeled	as	a	directed	acyclic	graph	(DAG)	(C,)	whose	set	of	nodes	
C contains	categories,	and	 represents	the	incidence	relation,	that	is,	c1	 c2	indi-
cates	that	the	category	c1	is	connected	to	the	category	c2	in	the	hierarchy	schema.	We	
will	draw	the	direction	of	the	edges	always	upward.	The	DAG	has	a	distinguished	
category	All	reachable	by	a	path	from	every	other	category	(top	category).	There	
may	be	several	nodes	with	no	ancestors	(bottom	categories).	A	hierarchy path	is	a	
path	of	categories	from	a	bottom	category	to	the	top	category.	As	an	example,	the	
graphs	in	the	left-hand	sides	of	Figures	1,	2,	and	4	are	hierarchy	schemas.
The	notion	of	hierarchy	schema	presented	has	two	differences	with	the	traditional	
notion	for	homogeneous	dimensions.	First,	we	allow	more	than	one	bottom	cat-
egory.	This	is	important	in	order	for	the	model	to	allow	unbalanced	dimensions,	a	
structural	adaptation	of	dimension	models,	which	will	be	explained	in	what	follows.	
Second,	the	model	allows	shortcuts	in	the	hierarchy	schema.	A	shortcut	is	a	path	of	
length	greater	than	one	between	a	pair	of	adjacent	categories.	As	an	example,	the	
path	Brand Category Department All	in	Figure	4a	is	a	shortcut.	Shortcuts	
are	important	in	heterogeneous	data	because	they	allow	the	modeling	of	the	situa-
tion	where	an	element	skips	a	parent	category	when	going	to	a	higher	category.	As	
an	example,	the	city	of	Washington	may	skip	the	category	State	and	go	directly	to	
the	category	Country	in	a	dimension	representing	locations.	

Hierarchy Domain

The	hierarchy	domain	 is	 the	graph	 that	models	 the	hierarchical	 arrangement	of	
the	elements	of	the	dimension.	It	is	also	formalized	with	a	DAG,	where	the	nodes	
represent	the	elements	of	the	dimension.	Formally,	the	hierarchy	domain	is	a	pair	
(M,	<),	where	M	is	the	set	of	elements	of	the	dimension	and	<	represents	the	child/
parent	relationship	between	elements.	The	DAG	has	a	distinguished	top	node	all.	
As	an	example,	in	the	dimension	of	Figure	4,	we	have	p5	<	b3	<	c2	<	d1	<	all.	The	
descendant/ancestor	relationship,	denoted	<,	is	the	transitive	closure	of	the	relation	
<.	As	an	example,	in	the	dimension	of	Figure	4,	from	the	existence	of	a	child/parent	
path	from	5	to	all,	it	follows	p5	<	all.	The	hierarchy	domain	may	have	many	bottom	
elements,	but	it	is	not	allowed	to	have	shortcuts.	The	reason	for	this	is	that	a	short-
cut	from	an	element	e1to	an	element	e2	is	redundant	information.	As	examples,	the	
graphs	in	the	right-hand	sides	of	Figures	1,	2,	and		4	are	hierarchy	domains.

�6 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Dimension

A	dimension	comprises	a	hierarchy	schema		(C,),	a	hierarchy	domain	(M,	<),	and	
a	function	d	:	M	→ C that defines the category to which each element belongs. In
particular,	the	element	all is	mapped	to	the	category	All,	that	is,	d(all)	=	All .	The	
fundamental	property	of	the	function	d	is	that	whenever	two	elements	satisfy	e1	<	
e2	in	the	hierarchy	domain,	the	corresponding	categories	to	which	they	belong	sat-
isfy	d(e1)	 d(e2).	In	other	words,	an	edge	in	the	hierarchy	domain	implies	an	edge	
between	the	corresponding	categories	in	the	hierarchy	schema.	In	more	technical	
words,	the	function	d is	a	graph morphism	(West,	1996)	that	relates	the	two	graphs	
of	a	dimension.	As	an	example,	consider	the	dimension	of	Figure	4.	Here,	because
b3	<	c2,	there	must	exist	an	edge	from	Brand	to	Category		(i.e.,	Brand Category)
in	the	hierarchy	schema.
A	central	restriction	in	OLAP	data	models	(Cabibbo	&	Torlone,	1998;	Hurtado	&	
Mendelzon,	2001,	2002;	Hurtado	et	al.,	2005;	Lehner	et	al.,	1998)	is	that	each	ele-
ment	of	a	category	c	should	go	(directly	or	indirectly)	to	no	more	than	one	element	
in	each	category	above	the	category	c.	This	restriction	is	called	strictness.	Formally,	
if	x	<	y	and		x	<	z for	two	different	elements	y,	z,	then	d(y)	¹ (z).	The	handling	of	
nonstrict	dimensions	in	OLAP	has	been	studied	by	Pedersen	et	al.	(1999)	and	by	
Malinowski	and	Zymanyi	(2004).	This	issue	is	orthogonal	to	the	topics	treated	in	
this	chapter.

Defining Heterogeneity

Heterogeneity	can	be	characterized	in	the	graph	model	in	a	simple	way.	A	dimension	
is	homogeneous	if	for	every	pairs	of	connected	categories	c1,	c2	(i.e.,	c1	 c2),	each	
element	of	c1	has	a	parent	in c2.	A	dimension	is	heterogeneous	if	it	is	not	homoge-
neous.	As	an	example,	the	dimension	of	Figure	1	is	homogeneous.	In	contrast,	the	
dimensions	of	Figures	2	and	4	are	heterogeneous.

Rollup Relation

There	could	be	different	approaches	 to	query	OLAP	data	over	graph	models	of	
dimensions	like	the	model	explained	here.	Jagadish	et	al.	(1999)	propose	SQL(H),	
a	query	language	that	includes	the	descendant/ancestor	relationship	as	a	built-in	
predicate	which	allows	for	succinctly	expressing	many	useful	queries	in	an	SQL	
style.	The	rollup	relation	between	two	categories	allows	expressing	relational	queries	
over	the	graph	model	of	the	dimension	(e.g.,	using	SQL).	Let	c1,	c2	be	two	catego-
ries of a fixed dimension such that c1	reaches	c2	in	the	hierarchy	schema	(i.e.,	c1	

Handling Structural Heterogeneity in OLAP ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

c2).	The	rollup	relation	from	c1	to	c2	in	a	dimension	d, denoted Γ[c1,	c2]	is defined
as	the	relational	table	having	attributes	c1,	c2,	and	containing	the	set	of	tuples	[c1	:	
e1	:	c2	:	e2]	such	that	d(e1)	=	c1,	d(e2)	=	c2,	and	e1	<	e2.	Notice	that	the	rollup	relation	
is defined for pairs of categories that are (directly or indirectly) connected in the
hierarchy	schema.	Note	also	that	the	notions	of	strictness	and	homogeneity	can	be	
defined in terms of the rollup relation. A dimension is strict if and only it has func-
tional	(i.e.,	single	valued)	rollup	relations.	A	dimension	is	homogeneous	if	and	only	
if each rollup relation Γ[c1,	c2] is	total	over	the	elements	in	c1.

Facts and Data Cubes

A	fact	is	a	data	entity	that	relates	a	list	of	elements,	taken	from	a	list	of	dimensions,	
to	measures	of	interest.	Facts	may	be	represented	as	tuples	in	fact	tables.	A	multi-
dimensional	database	comprises	a	set	of	dimensions,	along	with	a	base	fact	table,	
that	is,	a	fact	table	whose	attributes	are	the	bottom	categories	of	the	dimensions.	If	
the dimension has many bottom categories, we may define a new unique category,
containing	all	the	bottom	elements,	to	address	the	base	facts.

Cube Views, Data Cube

OLAP	users	need	to	analyze	facts	aggregated	at	multiple	levels	of	abstraction.	The	
basic	query	that	aggregates	base	facts	at	a	granularity	given	by	a	list	of	categories,	
one	per	dimension,	is	called	a	cube	view.	As	an	example,	consider	that	the	list	of	
dimensions	has	only	the	dimension	of	Figure	1.	In	this	case,	a	granularity	also	can	
be specified with a single category. The base fact table is the table SalesAtProduct	
which	has	as	attributes	Product	and	Amount	(this	last	attribute	is	the	measure).	A	
cube	view	that	sums	the	amounts	sold	at	the	category	Department can be defined
by	the	following	aggregate	query:

SELECT	Department,	SUM(Amount)

FROM	SalesAtProduct,Γ[Product,Department]

WHERE	SalesAtProduct.Product=Γ[Product,Department].Product

GROUP	BY	Department.

	
A	data cube is the set of all possible cube views defined over a list of dimensions,
a base table, and aggregated measures. In the context of a fixed data cube, we may
denote	a	cube	view	simply	as	CV[G]	where	G	is	a	granularity	(list	of	categories).	As	
an	example,	the	previous	cube	view	can	be	denoted	simply	as	CV[Department].	

�8 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

OLAP Aggregate Navigation

Rollup and Drilldown Operations

There	are	two	main	operators	to	move	among	the	different	cube	views	in	a	data	
cube,	namely	 the	 rollup	and	drilldown	operators	 (Jarke,	Lenzerini,	Vassiliou,	&	
Vassiliadis,	1997).	Given	two	granularities	G	and	G’,	a	rollup	operation	aggregates	
the	cube	view	CV[G]	to	the	granularity	G’.	As	an	example,	a	rollup	from	a	single-
category	granularity	Category	to	the	granularity	Department	in	a	data	cube	for	the	
dimension of Figure 1 can be defined using the following aggregate query:

SELECT	Department,	SUM(Amount)

FROM	CV[Category],Γ[Category,Department]

WHERE	CV[Category].Category=Γ[Category,Department].Category

GROUP	BY	Department.

	
This	rollup	operation,	applied	to	the	cube	view	CV[Category]	aggregates	the	facts	
in it to the granularity of aggregation specified by the category Department.	In	the	
context of a fixed data cube we abbreviate this rollup operation as ROLLUP Cat-
egory	TO	Department.	Rollup	operations	have	also	been	called	summarizations	
(Lenz	&	Shoshani,	1997)	or	consolidations	(Harinarayan,	Rajaraman,	&	Ullman,	
1996).	The	drill	down	operation	has	the	inverse	effect	of	the	rollup	operation	and	
allows	users	to	move	to	a	cube	view	at	a	lower	granularity.	

Dependence

The	possible	roll-up	and	drill-down	operations	can	be	represented	by	a	structure	
called	cube dependence graph, which is defined as the direct product of the list of
hierarchy	schemas	involved.	That	is,	a	granularity	G’	is	connected	to	a	granularity	
G	 if	 their	corresponding	categories	are	pairwise	connected	in	the	corresponding	
dimension.
The	cube	dependence	graph	is	a	useful	representation	for	the	system	and	user	to	
navigate	throughout	aggregates	at	different	granularities	(Harinarayan	et	al.,	1996).	
The	cube	dependence	graph	also	generalizes	structures	to	visualize	aggregate	views	
proposed	for	statistical	databases,	such	as	 in	 the	statistical	object	 representation	
model	by	Rafanelli	and	Shoshani	(1990).	As	an	example,	Figure	6	shows	a	cube	
dependence	graph	for	the	product	dimension	of	Figure	1	and	a	time	dimension	with	
categories	Day,	Year,	and	All.

Handling Structural Heterogeneity in OLAP ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

A	fundamental	property	of	a	cube	dependence	graph	in	traditional	OLAP	models	
(homogeneous	dimensions)	is	that	the	rollup	operations	are	correct	in	the	following	
sense:	if	a	granularity	G	reaches	G’,	then	the	following	holds:	CV[G’]=	ROLLUP	
G	TO	G’.	That	is,	the	cube	view	at	G’	can	be	correctly	computed	by	a	rollup	opera-
tion	from	G	to	G’.	In	the	terminology	of	Harinarayan	et	al.	(1996),	G’	depends	on	
G.	Thus	dependency	between	granularities	corresponds	to	reachability	in	the	cube	
dependence	graph.	Of	course,	in	order	for	this	to	happen	the	aggregate	function	
involved	should	be	distributive.	A	distributive	aggregate	function	can	be	computed	
on	a	set	of	measures	by	partitioning	the	set	into	disjoint	subsets,	aggregating	each	
separately,	and	then	computing	the	aggregation	of	these	partial	results	with	another	
aggregate	function	(which	in	many	cases	is	the	same	function).	Among	the	SQL	
aggregate	functions,	COUNT,	SUM,	MIN,	and	MAX	are	distributive.	As	we	will	
see	later,	in	this	setting,	the	correctness	of	the	rollup	operations	requires	the	dimen-
sions	to	be	homogeneous.	

Summarizability

The	notion	of	summarizability	was	proposed	to	study	aggregate	navigation	for	statis-
tical	objects	and	OLAP	dimensions	(Hurtado	&	Mendelzon,	2001,	2002;	Hurtado	et	
al.,	2005;	Lehner	et	al.,	1998;	Lenz	&	Shoshani,	1997).	Summarizability	refers	to	the	
conditions upon which a rollup operation defined over a single dimension is correct;
that	is,	summarizability	corresponds	to	dependence	for	single	categories	taken	from	
a fixed dimension. For the one-dimensional case, the cube dependence graph is just

	Figure 6. A cube dependence graph

40 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

the	hierarchy	schema,	and	consequently	in	traditional	OLAP	models	(homogeneous	
dimensions)	summarizability	is	equivalent	to	reachability	in	the	hierarchy	schema.	

Anomalies Caused by Heterogeneity

The	main	role	of	the	schema	of	a	dimension	is	to	guide	users	in	the	application	
of	OLAP	operations	and	to	prevent	users	from	formulating	erroneous	operations.	
Heterogeneity	may	turn	hierarchy	schemas	into	entangled	structures	for	visualizing	
OLAP	data	and	formulating	correct	aggregate	operations.	

Complexity of Heterogeneous Dimensions

In	the	presence	of	heterogeneity	the	hierarchy	schema	may	become	awkward.	A	
heterogeneous	dimension	comprising	a	dozen	product	types	may	carry	more	than	
100	categories,	and	some	of	them	would	be	empty	for	almost	every	element	of	the	
dimension	(Kimball,	1996).	The	problem	is	not	only	that	some	categories	are	not	
valid	for	some	elements,	but	that	different	combinations	of	categories	and	paths	
may	not	be	valid,	and	the	hierarchy	schema	does	not	provide	enough	semantics	
to understand this. Consequently, it may be difficult for users to understand the
hierarchy	domain	by	visualizing	the	hierarchy	schema,	as	can	be	observed	in	the	
dimension	of	Figure	7.	This	dimension	is	a	more	complex	heterogeneous	version	
that	models	electronic	products	and	CDs	of	a	retailer.	

Implications for Summarizability

In	 a	 heterogeneous	dimension	 the	 rollup	operations	 are	 not	 necessarily	 correct.	
Stated	in	OLAP	terminology,	in	heterogeneous	dimensions	summarizability	does	
not	necessarily	correspond	to	reachability	in	the	hierarchy	schema.	That	is,	we	can-
not	infer	the	correctness	of	rollup	operations	just	by	viewing	the	hierarchy	schema.	
As	an	example,	the	rollup	operation

ROLLUP	Brand	TO	Category	

is	 not	 correct	 in	 the	 dimension	 of	 Figure	4,	 since	 some	 products	 would	 not	 be	
counted	in	the	derivation.	In	general,	under	heterogeneity,	hierarchy	schemas	may	
have	inconsistent	paths,	that	is,	paths	c1	 c2	 c3	 ...	cn	in	the	hierarchy	schema	
for	which	some	category	i+1	is	not	summarizable	from	its	preceding	category	i	in	
the	path.	As	an	example,	the	following	hierarchy	path	is	inconsistent	in	the	dimen-
sion	of	Figure	7:	

Handling Structural Heterogeneity in OLAP 4�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Product ElectricalCategory Category Department All.

In	contrast,	the	path	Product Brand Company All	is	consistent	for	the	same	
dimension.

Figure 7. A heterogeneous dimension: (a) hierarchy schema; (b) hierarchy domain

	

(a
)

(b
)

42 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Implications for the Cube Dependence Graph

When	the	homogeneity	condition	is	dropped,	the	correctness	of	a	rollup	opera-
tion	does	not	follow	from	the	cube	dependence	graph.	The	problem	can	be	easily	
realized	by	noting	that	the	cube	dependence	graph	of	a	single	dimension	corre-
sponds	to	its	hierarchy	schema.	The	anomalous	behavior	of	the	cube	dependence	
graph	has	deep	implications	for	OLAP	query	processing,	since	the	cube	depen-
dence	graph	is	used	in	algorithms	to	compute	and	maintain	data	cubes	(Mumick,	
Quass,	&	Mumick,	1997),	and	to	speed	up	OLAP	query	processing	(Harinarayan	
et	al.,	1996).	

Implications for Relational OLAP Models

Kimball	(1996)	argues	that	the	best	logical	model	to	place	OLAP	queries	is	the	
star	schema.	In	the	star	schema	the	dimension	consists	of	a	single	table	where	the	
categories	are	arranged	as	attributes.	We	will	refer	to	this	table	as	a	star	dimen-
sion.	The	table	organizes	the	dimension	elements	as	tuples,	and	allows	simple	
tuple browsing to place filters in OLAP queries. A star dimension requires the
hierarchy	schema	to	have	a	single	bottom	category,	which	is	the	key	attribute	of	
the	table.	The	edges	in	the	hierarchy	schema	are	regarded	as	functional	depen-
dencies	over	the	table.	
Another	relational	realization	of	OLAP	data	is	the	snowflake schema, which yields
snowflake dimensions. A snowflake dimension has one table per category c,	which	
stores	together	all	the	rollup	relations	to	the	parent	categories	of	c.	The	tables	are	
normalized	avoiding	redundant	data.	However,	in	contrast	to	the	star	dimension,	
the	snowflake dimension requires to process join operations over its tables, in order
to	assemble	tuples	for	browsing	and	aggregate	query	processing.	

Relationship among Graph, Star, and Snowflake Dimensions

Dimensions	in	the	graph	model	we	presented	(we	will	refer	to	them	simply	as	di-
mensions, in contrast to star and snowflake dimensions) can be easily translated to
a	star	dimension	(Hurtado	et	al.,	1999),	provided	the	dimension	is	homogeneous	
and	has	a	single	bottom	category.	The	table	has	as	attributes	the	categories	of	the	
dimension.	For	each	bottom	element	m	of	the	graph	dimension,	there	is	a	tuple	in	
the	table	composed	of	the	ancestors	of	m.	As	an	example,	Table	1	shows	the	star	
dimension	corresponding	to	the	dimension	of	Figure	4.
The	 translation	of	a	star	dimension	 to	a	graph	dimension	requires	capturing	 the	
rollup	relations	from	the	table.	It	is	simply	obtained	by	projecting	the	table	over	

Handling Structural Heterogeneity in OLAP 4�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

the	categories	involved	in	the	rollup	relation.	As	an	example,	the	rollup	relation	
Γ[Brand,Category]	can	be	obtained	by	the	following	query:

SELECT	Brand,Category	FROM	Table_Product.

The translation between graph and snowflake dimensions is straightforward.
The problems reported in this chapter also appear in star and snowflake dimensions.
We	next	explain	further	implications	of	heterogeneity	for	them.

Allowing Heterogeneity

In	a	relational	table	each	element	of	dimension	table	needs	one	entry	for	each	attri-
bute. Thus in order to allow structural heterogeneity in star and snowflake schemas,
null	values	should	be	allowed	in	the	tables.	It	is	not	easy	to	do	this	since	functional	
dependencies	should	be	interpreted	in	presence	of	null	values.	In	order	to	allow	
nulls,	Lehner	et	al.	(1998)	propose	weak	functional	dependencies,	that	is,	functional	
dependencies	A	→ B	 that	do	not	constrain	tuples	when	they	have	null	values	in	
the	attribute	B.	The	attributes	that	participate	in	the	right	sides	of	weak	functional	
dependencies	are	treated	outside	the	hierarchy	schema	as	descriptive	attributes	for	
the categories. Weak functional dependencies can be used in snowflake dimensions.
However,	in	star	dimensions	we	may	also	need	to	interpret	functional	dependen-
cies	when	nulls	appear	in	the	left	side	of	the	functional	dependence.	An	additional	
problem	is	that	due	to	the	denormalized	nature	of	star	dimensions,	heterogeneity	
may	lead	to	a	proliferation	of	null	values	in	the	table.	Due	to	these	problems,	some	
researchers	have	stated	that	the	star	schema	does	not	allow	structural	heterogene-
ity	(Jagadish	et	al.,	1999).

Table 1.

Product Brand Category Department

p1 b1 c1 d1

p2 b1 c2 d1

p3 b2 c1 d1

p4 b2 c2 d1

p5 b3 c2 d1

44 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Implications to the Representation of the Hierarchy Domain

In	the	presence	of	heterogeneity	there	is	no	precise	correspondence	between	dimen-
sions	and	star	dimensions.	The	hierarchy	domain	(i.e.,	the	hierarchical	arrangement	
of	elements)	of	a	heterogeneous	dimension	may	not	be	correctly	captured	by	the	star	
dimension.	As	an	example,	if	we	represent	the	heterogeneous	dimension	of	Figure	4	as	
a	star	dimension,	we	cannot	recover	the	original	child/parent	relation	back.	Indeed,	if	
we try to recover the rollup relation Γ[Brand,Category],	we	obtain	the	relation	with	a	
single	pair	[Brand:	b3,Category:c2].	The	original	rollup	relation	is	show	in	Table	2.
Among	other	problems,	this	implies	that	the	standard	semantics	of	drilldown	and	
rollup	operations	differ	for	both	models.	Notice	also	that	in	this	case,	although	the	
dimension	is	heterogeneous,	its	star	representation	does	not	have	null	values.	This	
situation	illustrates	that,	as	explained	in	the	introductory	section,	heterogeneity	is	not	
only	caused	by	the	nonapplicability	of	attributes	(e.g.,	dimension	of	Figure	2)	but	
also	by	the	mixture	of	hierarchies	in	the	dimension	(e.g.,	dimension	of	Figure	4).	

Adapting.Heterogenous.Dimensions

The	general	approach	to	handle	structural	heterogeneity	in	OLAP	is	 to	adapt	or	
transform	the	dimensions	in	order	to	obtain	homogeneous	data.	In	this	section	we	
examine	two	approaches	along	this	idea.	First,	we	explain	the	use	of	null	elements,	
and	then	we	explore	structural	adjustments	of	heterogeneous	dimension	necessary	
to	obtain	homogeneous	dimensions.	In	the	latter	case,	the	hierarchy	schemas	of	the	
original dimensions are modified.

Table 2.

Brand Category

b1 c1

b1 c2

b2 c1

b2 c2

b3 c2

Handling Structural Heterogeneity in OLAP 4�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Null Elements

At first sight, as heterogeneity is nothing more than having elements without parents
in	some	categories,	the	problem	could	be	solved	straightforwardly	by	adding	null	
elements.	In	this	form	a	heterogeneous	dimension	would	be	turned	homogeneous	
without any modification of its structure. However, it is not easy to add null elements
to	get	a	homogeneous	dimension	whose	rollup	relations	are	strict,	that	is,	without	
violating	the	fundamental	property	of	dimensions	explained.	Using	a	single	null	
element	null,	as	in	the	relational	database	setting,	does	not	prevent	this	problem.	
Pedersen	et	al.	(1999)	propose	a	method	for	adding	null	elements	which	overcomes	
this	drawback.	The	central	idea	is	to	allow	adding	different	nulls,	which	may	be	the	
result	of	breaking	up	some	of	the	original	elements	of	the	dimension.	The	nulls	are	
interpreted	as	regular	elements	and	the	resulting	dimension	is	homogeneous,	so	the	
framework	of	aggregate	navigation	can	be	applied.
The	transformation	has	low	and	practical	complexity	and	can	be	applied	to	OLAP	data	
in	a	preprocessing	stage	before	loading	the	data	cube.	An	algorithm,	called	MakeCov-
ering,	performs	the	transformation.	The	algorithm	has	polynomial	time	complexity	
on	the	size	of	the	dimension.	More	precisely,	the	algorithm	takes	O(k2nlogn),	where	
k	is	the	number	of	categories,	and	n	is	the	size	of	the	largest	rollup	relation.	
In	many	situations	the	null	elements	have	a	low	interference	with	the	original	data;	
and	therefore	handling	heterogeneity	with	null	elements	has	practical	applicability	
in	many	cases.	Intuitively,	in	such	cases,	the	null	elements	play	the	role	of	the	other	
or	the	unknown	class.	However,	in	worst-case	scenarios,	the	transformation	may	
lead	to	dimensions	with	many	new	null	elements	per	category.	In	these	cases,	the	
number	of	rows	of	the	data	cube	and	cube	views	may	be	considerably	increased	due	
to	the	null	elements.	As	some	original	elements	of	the	dimension	may	be	broken	up	
into	different	nulls,	the	semantics	of	the	original	dimension	may	be	altered.	As	an	
example,	Figure	8	shows	a	homogeneous	version	of	the	dimension	of	Figure	4	with	
null	elements.	Notice	that	in	order	for	the	dimension	to	be	strict,	the	elements	b1	and	
b2	have	been	broken	up	into	the	null	elements	b11	,	b12	and	b21	,	b22,	respectively.	Also	
notice	that	the	edges	Brand Category	and	Product Category	are	not	required	in	
this	dimension.	Now,	the	hierarchy	schema	only	models	the	hierarchy	path	Product
 Brand Category Department All.	
Although	the	addition	of	nulls	turns	hierarchy	paths	consistent,	null	elements	may	
cause	meaningless	aggregations	inside	rollup	operations.	As	an	example,	consider	
the	dimension	of	Figure	4,	and	the	fact	table	SalesAtProduct	representing	the	sales	
of	the	retailer.	We	may	compute	the	sales	and	break	them	down	by	brands	using	
the	following	rollup	operation:

ROLLUP	Product	TO	Brand.	

46 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Nothing	will	prevent	the	OLAP	system	from	scanning	the	entire	set	of	base	facts	to	
compute	the	answer.	However,	not	all	of	the	base	facts	have	brands;	thus	they	are	
not	needed	in	the	aggregation.
Null	values	may	also	interfere	with	the	result	of	more	complex	aggregate	queries	
placed	over	facts	at	the	data	cube.	An	example	is	a	class	of	queries	that	involves	
multiple	dependent	aggregates	called	multifeature aggregates	(Chatziantoniou	&	
Ross,	1996).	Consider	the	following	query	that	computes	the	maximum	amount	
over	all	the	total	amounts	sold	for	each	brand:

SELECT	Brand,	MAX(Amount)

FROM	CV[Brand].

	
The	result	would	be	incorrect	if	the	total	sales	at	some	null	element	surpass	the	sales	
of	each	brand.	This	can	happen	in	the	dimension	at	hand	if	the	sales	of	musical	
products	surpass	the	sales	for	each	electrical	product.	Lehner	et	al.	(1998)	report	
additional	anomalies	in	actual	OLAP	scenarios	due	to	contradictory	queries	that	
arise	when	handling	heterogeneity	with	nulls.	

Structural.Adaptations

Another	adaptation	of	standard	dimension	models	to	overcome	the	problems	posed	
by	structural	heterogeneity	is	proposed	by	Jagadish	et	al.	(1999).	The	main	property	
of	this	model	is	to	allow	hierarchy	paths	starting	from	different	bottom	categories.	
In	this	setting	the	hierarchy	paths	look	unbalanced,	from	where	comes	the	moti-
vation	for	calling	so	dimensions	having	this	property.	This	model	is	subsumed	by	

Figure 8. A version of the dimension of Figure 4 with null elements: (a) hierarchy
schema; (b) hierarchy domain

	

(a) (b)

Handling Structural Heterogeneity in OLAP 4�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

the	graph	model	described	in	this	chapter.	The	term	unbalanced	dimension	is	also	
used	to	refer	to	dimensions	which	handle	child/parent	relationships	that	cannot	be	
modeled with fixed length paths in the dimension hierarchy (a good example is the
relation	boss/employee	in	a	company).	This	use	of	the	term	slightly	differs	from	
the	use	given	in	this	chapter.	
The	unbalancedness	of	the	hierarchy	schema	is	not	allowed	in	traditional	models,	as	
in the early model of Cabbibo and Torleone (1998), along with the snowflake and
the	star	schemas.	The	restriction	of	having	a	bottom	category	in	these	models	is	due	

Figure 9. An unbalanced dimension that models the Product dimension of Figure 2:
(a) hierarchy schema; (b) hierarchy domain

	

(a
)

(b
)

48 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

to	the	simplicity	of	having	a	unique	bottom	granularity	at	which	the	base	facts	are	
addressed	(the	attribute	associated	to	such	category	participates	in	the	composed	
key of the fact table in star and snowflake schemas). By allowing many bottom cat-
egories,	the	heterogeneous	dimension	can	be	broken	up	into	the	different	structures	
that	are	mixed	in	the	original	dimension.	In	this	form	a	homogeneous	dimension	
having	consistent	paths	for	aggregate	navigation	is	obtained.	
Several	commercial	OLAP	systems	allow	storing	this	sort	of	structure.	Basically	
the	user	should	enter	separately	each	hierarchy	path	in	a	dimension	set	to	allow	
multiple	hierarchies.	
As	an	example,	Figure	9	shows	an	unbalanced	homogeneous	dimension	that	models	
the	product	dimension	of	Figure	2.	Notice	that	the	two	dimensions	have	the	same	hier-
archy	domain.	However,	in	the	new	dimension	the	products	are	broken	up	and	stored	
in	different	categories	for	each	of	the	four	structures	of	Figure	3.	Figure	10	shows	an	
unbalanced	homogeneous	version	for	the	heterogeneous	dimension	of	Figure	4.
The model provides flexibility to define a different base fact table for each bottom
category,	a	single	base	fact	table	for	all	the	categories,	or	both.	If	we	consider	dif-
ferent	fact	tables,	the	hierarchy	paths	of	the	former	are	consistent.	Now	the	cube	
view	CV[Department]	can	be	correctly	computed	by	the	rollup:

ROLLUP	Category	TO	Department	

If we consider cube views defined over a single base fact table that contains all the
elements,	 the	hierarchy	paths	are	not	consistent.	 In	 this	case	we	need	ROLLUP	
operations	that	combine	categories,	as	we	will	see	in	the	next	section.
Kimball	(1996)	proposes	a	similar	solution	to	deal	with	heterogeneity,	but	in	his	
approach	 the	homogeneous	structures	mixed	are	placed	 in	separate	dimensions.	

Figure 10. An unbalanced dimension that models the Product dimension of Figure 4:
(a) hierarchy schema; (b) hierarchy domain

(a) (b)

Handling Structural Heterogeneity in OLAP 4�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Although	the	problem	to	solve	is	the	nonapplicability	of	attributes,	that	is,	the	form	
of	heterogeneity	illustrated	in	the	dimension	of	Figure	4,	the	solution	works	for	the	
general	case.	The	approach	involves	partitioning	the	original	data	cube	into	one	
data	cube	for	each	dimension.	A	dimension	that	contains	the	structure	shared	by	all	
the	resulting	homogeneous	dimensions,	called	the	core	dimension,	is	kept	with	a	
data	cube,	called	core	data	cube,	which	aggregate	facts	at	all	the	bottom	elements	
of	the	original	dimension.

Dimension.Constraints

In	this	section	we	describe	the	approach	of	modeling	heterogeneity	with	integrity	
constraints.	We	explain	the	framework	of	dimension	constraints	(Hurtado	&	Men-
delzon,	2001;	Hurtado	et	al.,	2005),	a	class	of	integrity	constraints	for	OLAP	data	
that	provide	semantics	to	the	hierarchy	schema	so	that	it	is	turned	into	a	better	ab-
straction	to	capture	heterogeneity.
We first motivate dimension constraints. Then we explain how the homogeneous
structures	mixed	in	the	dimension,	called	frozen	dimensions,	can	be	computed	from	
the	constraints,	and	explain	inference	of	dimension	constraints	in	this	framework.	
Finally,	we	show	the	application	of	dimension	constraints	to	support	the	structural	
adaptations	explained	in	the	previous	section,	and	to	reason	about	the	correctness	
of	OLAP	aggregate	operators	in	heterogeneous	dimensions.

Examples

Dimension	constraints	are	statements	that	specify	categories	and	paths	allowed	in	the	
structures of the elements of a dimension. We will illustrate the flavor of dimension
constraints	using	the	dimension	of	Figure	4.	Observe	that	every	product	element	of	
this	dimension	has	the	categories	Brand	and	ElectricalCategory	appearing	together	
or	not	appearing	at	all.	This	can	be	expressed	with	the	following	constraint:

〈Product,Brand〉	⇔	〈Product,ElectricalCategory〉.

This	constraint	is	a	statement	that	holds	for	all	elements	at	the	category	Product,	
which	is	the	root category	of	the	constraint.	As	an	example,	if	we	take	the	element	
p1	and	replace	it	in	the	constraint	we	obtain	the	expression:		

〈p1,Brand〉 ⇔ 〈p1,ElectricalCategory〉,

�0 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

which	means	that	p1	has	an	ancestor	in	Brand	if	and	only	if	p1	has	an	ancestor	in	
ElectricalCategory.	So	the	constraint	allows	to	discard	the	structures	in	which	Brand	
and	MusicCategory	do	not	appear	together.	This	is	important,	since	if	we	generalize	
the	dimension	of	Figure	4	to	have	n	different	categories	instead	of	just	four,	there	
might	be	2n	–	1	possible	structures	(one	for	each	nonempty	subset	of	categories).	The	
hierarchy	schema	does	not	provide	semantics	to	discard	any	of	such	structures.
Dimension	constraints	are	Boolean	combinations	of	atomic	statements	called	atoms.	
We	use	the	standard	Boolean	connectives	(∧ ,∨,	¬,	⇔,	⇒)	.	Atoms	are	the	expres-
sions	in	brackets.	As	an	example,	the	constraint:

¬	〈Product,ElectricalCategory〉 ∨	¬	〈Product,MusicCategory〉

states	that	the	products	have	parents	in	either	ElectricalCategory	or	MusicCategory	
but	not	in	both	of	them.
We	need	negation,	conjunction,	and	disjunction,	to	restrict	structures	and	to	reason	
about	summarizability	(Hurtado	et	al.,	2005).	This	motivated	us	to	incorporate	the	
entire	expressiveness	of	the	Boolean	connectives	into	dimension	constraints.	Di-
mension	constraints	also	incorporate	atoms	of	the	form	〈Product, Brand=	b3〉	called	
equality atom	which	make	it	possible	to	place	restrictions	conditioned	on	particular	
elements.	As	an	additional	example,	we	may	write	that	the	products	that	belong	to	
brand	b3	are	sold	on	shelves,	using	the	following	constraint:		

〈Product, Brand=b3〉 ⇒ 〈Product,Shelf〉.

The	constraints	we	have	already	showed	are	statements	about	the	applicability	of	
categories.	We	may	also	need	to	place	restrictions	about	the	applicability	of	hierar-
chy	paths.	We	use	paths atoms	for	this	purpose.	As	an	example,	in	the	dimension	
of	Figure	7,	we	may	state	that	the	products	that	belong	to	the	electrical	category	
ec2	have	the	path	BrandCategoryDepartmentAll	in	their	structure,	using	the	
following	constraint:		

〈Product, ElectricalCategory=ec2〉 ⇒ 〈Product,Brand,Category,Department,All〉.

There	are	also	atoms	that	restrict	categories	that	may	be	indirectly	reached	by	the	
root	category.	As	an	example,	the	dimension	of	Figure	4	may	be	modeled	with	just	
the	following	constraint:

〈Product,Brand〉 ∨ 〈Product,..,Category〉.

Handling Structural Heterogeneity in OLAP ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

With	this	constraint	we	discard	structures	that	do	not	contain	Brand	or	Category.	
However,	the	product	elements	may	reach	both	directly	or	indirectly	the	elements	
at	Category.	In	particular,	the	edge	BrandCategory	allows	some	elements	to	reach	
Category	indirectly	passing	through	Brand.
In	previous	work	(Hurtado	et	al.,	2005),	dimension	constraints	are	compared	with	
other	classes	of	constraints	proposed	to	capture	different	forms	of	heterogeneity	
for	OLAP	(Huseman	et	al.,	2000;	Lehner	et	al.,	1998),	relational	(Goldstein,	1981),	
and	semistructured	(Abiteboul	&	Vianu,	1999;	Buneman,	Fan	&	Weinstein,	1998)	
data.	Among	them,	the	constraints	of	Husemann	et	al.	(2000)	are	closely	related	to	
dimension	constraints	in	that	they	address	a	form	of	structural	heterogeneity	study	in	
this	chapter.	These	constraints	are	subsumed	by	dimension	constraints.	They	allow	
expressing	that	two	paths	in	the	hierarchy	schema	that	start	from	a	single	category	
are	mandatory	or	alternative

Extracting.Homogeneous.Structures

In	 general,	 a	 hierarchy	 schema	 allows	 an	 exponential	 number	 of	 homogeneous	
structures	and	we	may	express	them	succinctly	with	dimension	constraints.	The	
situation	is	analogous	to	using	propositional	formulas	to	specify	the	truth	values	
of	a	set	of	propositions.	In	the	framework	of	dimension	constraints	the	proposi-
tions	are	the	atoms	that	state	which	parts	of	the	homogeneous	structure	allowed.	
Such	 structures,	 called	 frozen	 dimensions,	 are	 themselves	 important	 to	 support	
visualization	and	to	transform	heterogeneous	dimensions	to	structural	adaptations	
previously	explained.	In	addition,	they	are	the	basis	for	an	inference	algorithm	for	
dimension	constraints.
In	previous	work	(Hurtado	et	al.,	2005),	we	propose	an	algorithm	to	compute	the	
frozen	dimensions	that	arise	in	a	dimension	schema.	A	dimension	schema	is	a	hi-
erarchy	schema	along	with	a	set	of	dimension	constraints.	The	algorithm	explores	
subgraphs	of	the	hierarchy	schema,	and	tests	whether	they	satisfy	the	constraints.	The	
subgraphs	are	built	by	traversing	the	hierarchy	schema	from	the	bottom	categories,	
and	using	dimension	constraints	for	pruning.	The	algorithm	runs	in	exponential	time	
in	the	size	of	the	schema.	An	experimental	evaluation	provided	shows	that	the	set	
frozen	dimensions	can	be	computed	in	the	order	of	the	few	seconds	for	dimension	
schemas	of	around	25	categories	and	120.000	frozen	dimensions,	that	is,	for	schemas	
of	much	more	complexity	than	the	ones	found	in	practical	scenarios.

Inference

In	the	framework	of	dimension	constraints	the	hierarchy	schema	is	augmented	with	
constraints	yielding	the	notion	of	dimension	schema.	A	dimension	schema	is	a	pair	

�2 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

D =	(H,	∑)	,	where	H is	a	hierarchy	schema,	and	∑ is	a	set	of	dimension	constraints.	
A dimension schema specifies a set of possible dimensions, that is, the dimensions
that	have	the	hierarchy	schema	H and	satisfy	the	set	of	constraints	∑.	Those	dimen-
sions	are	the	possible	instances	of	the	schema.
A	dimension	schema	D logically implies	a	dimension	constraint	a,	if	every	dimen-
sion	d	over	the	schema	D satisfies a.	The	implication problem	for	dimension	con-
straints	is	the	problem	of	determining,	given	a	dimension	schema	D and	a	dimension	
constraint α, whether D implies α. Although the implication problem for dimension
constraints	is	CoNP-complete	in	the	size	of	the	schema,	due	to	the	sizes	of	schemas	
occurring	in	practice,	it	is	treatable.	The	problem	reduces	to	computing	the	frozen	
dimensions	of	the	schema.	An	algorithm	to	test	implication	based	on	the	compu-
tation	of	frozen	dimensions,	called	Dimsat,	is	presented	in	Hurtado	et	al.	(2005).	
Here,	experiments	show	that	Dimsat	takes	few	seconds	to	test	the	implication	of	a	
dimension	constraint	from	a	highly	heterogeneous	schema	of	25	categories.	

Supporting.Structural.Adaptations

The	framework	of	dimension	constraints	and	frozen	dimensions	can	be	used	to	au-
tomate	the	construction	of	the	structural	adaptations	explained	in	previous	sections.	
In	this	form	we	may	use	the	semantics	of	the	schema	to	transform	heterogeneous	
dimensions, a task that could be difficult to do manually when handling complex
dimensions.	As	an	example,	it	is	not	easy	to	obtain	the	unbalanced	dimension	of	
Figure	11	from	the	entangled	product	dimension	of	Figure	7.	
Frozen	dimensions	correspond	to	the	homogeneous	dimensions	in	the	decomposition	
proposed	by	Kimball	(1996),	so	the	decomposition	can	be	obtained	by	the	algo-
rithm	that	computes	frozen	dimensions,	explained	before.	In	Hurtado	and	Gutierrez	
(2004),	we	propose	an	algorithm	that	transforms	heterogeneous	dimension	schemas	
into	the	unbalanced	homogeneous	schemas	of	Jagadish	et	al.	(1999),	we	called	ca-
nonical schemas. The algorithm first computes the set of frozen dimensions of the
original	schema	and	then	iteratively	splits	the	categories	that	cause	heterogeneity.	
In	each	split	operation	the	hierarchy	schema	is	transformed	so	that	the	resulting	
hierarchy	schema	has	a	single	category	for	each	different	frozen	dimension	over	
the	category.	The	algorithm	outputs	a	dimension	schema	having	the	constraints	that	
state	the	homogeneity	condition.	If	the	set	of	frozen	dimensions	are	precomputed,	
the	algorithm	runs	in	time	O(fi3),	where	n	is	the	size	of	the	hierarchy	schema,	and	
f	is	the	number	of	frozen	dimensions.
The	transformation	described	has	an	important	property.	The	resulting	schema	is	
equivalent	to	the	original	schema	in	that	they	both	model	the	same	set	of	hierarchy	
domains	(Hurtado	&	Gutierrez,	2004).	This	proves	that	heterogeneous	schemas	can	
be	transformed	into	canonical	schemas	without	losing	information	capacity	in	the	
schemas,	and	without	breaking	down	the	hierarchy	arrangement	of	elements.

Handling Structural Heterogeneity in OLAP ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Supporting Aggregate Navigation

Integrity	constraints	can	be	also	used	to	support	aggregate	navigation.	Hierarchy	
schemas	enriched	with	dimension	constraints	become	an	adequate	abstract	model	
to	infer	the	correctness	of	rollup	operations	if	one	may	want	to	keep	the	heteroge-
neous	structure	of	the	dimension.	In	some	situations	it	can	be	useful	to	keep	the	
heterogeneous	 structure,	 since	 it	 allows	 fewer	 categories	 and	 to	more	 naturally	

Figure 11. An unbalanced dimension: (a) hierarchy schema; (b) rollup relation

	

(a
)

(b
)

�4 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

group	elements	into	categories.	A	smaller	number	of	categories	might	exponentially	
decrease	the	number	of	cube	views	we	may	need	to	handle	and	store	in	star	and	
snowflake realizations.
We	next	show	that	the	problem	of	testing	the	correctness	of	a	rollup	operation	(that	
is,	summarizability)	reduces	to	an	inference	problem	over	dimension	constraints.	
Rollup	operations	can	be	generalized	rollup	operations	to	allow	the	combination	
of	several	granularities	(Hurtado	&	Mendelzon,	2001,	2002;	Hurtado	et	al.,	2005).	
This	is	needed	since	one	may	obtain	a	cube	view	by	combining	other	cube	views	
in	heterogeneous	dimensions.	As	an	example	in	the	dimension	of	Figure	4	the	cube	
view	CV[All]	can	be	computed	by	the	following	rollup	operator,	that	combines	the	
cube	views	CV[MusicCategory]	and	CV[ElectricalCategory]:

ROLLUP	MusicCategory,ElectricalCategory	TO	All.	

In	order	to	check	the	correctness	of	this	operation,	two	constraints	about	(a)	dis-
jointness	and	(b)	completeness	of	the	categories	combined	should	be	inferred	from	
a	dimension	schema	D	that	models	the	dimension.	Therefore	the	problem	reduces	
to	testing	the	following	constraints:	

(a) ¬ 〈Product,MusicCat,All〉 ∨ ¬ 〈Product,ElectricalCat,All〉

(b) 〈Product,MusicCat,All〉 ∨ 〈Product,ElectricalCat,All〉.

	
Here	the	atom	〈Product,MusicCat,All〉	expresses	that	the	product	element	go	the	
element	all	in	All	passing	through	an	element	in	MusicCat.	The	other	atom	is	in-
terpreted	similarly.	
In	previous	work	(Hurtado	&	Gutierrez,	2003),	we	provide	an	algorithm	to	compute	
the	set	of	correct	rollup	operations	from	the	dimension	schema.	As	the	dimension	
schema is fixed, the correct operations can be computed once before the data cube
is	queried.	In	addition,	dimension	constraints	allow	identifying	consistent	paths	of	
aggregation	in	the	hierarchy	schema.	As	an	example,	from	a	schema	D that	models	
the	dimension	of	Figure	7,	one	may	want	to	check	whether	the	path	ProductBran
dCompanyAll	is	consistent,	which	reduces	to	testing	the	implication	of	follow-
ing	constraint	〈Product,Brand,Company,All〉	from	the	schema	D.

Conclusion

When	the	homogeneity	condition	is	dropped	the	framework	for	aggregate	navigation	
that	underlies	OLAP	systems	cannot	be	applied.	In	this	chapter	we	have	surveyed	

Handling Structural Heterogeneity in OLAP ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

different	methods	to	deal	with	this	problem.	The	situation	can	be	handled	by	adding	
null	elements	in	a	way	such	that	we	obtain	homogeneous	dimensions	with	all	the	stan-
dard	properties.	This	seems	to	be	a	practical	solution	in	many	situations,	in	particular	
when	heterogeneity	arises	as	an	exception	due	to	incomplete	information,	or	when	
the	structure	of	the	dimension	is	simple.	In	other	cases,	it	seems	better	to	repair	the	
structure	so	it	can	serve	to	guide	users	in	query	formulation.	Using	these	techniques	
we	can	transform	heterogeneous	into	homogeneous	data	so	that	the	standard	frame-
work	of	OLAP	aggregate	navigation	applies.	We	have	also	explained	the	framework	
of	dimension	constraints,	which	allow	to	capture	the	mixture	of	structures	and	to	
support	transformations	to	homogeneous	structures.	Besides,	dimension	constraints	
support	reasoning	about	aggregate	navigation	in	heterogeneous	OLAP	data.	
There	are	other	forms	of	structural	heterogeneity	in	OLAP	models.	It	may	be	found	
in	real	data	warehousing	heterogeneity	resulting	from	the	nonvalidity	of	descrip-
tive	attributes	attached	to	the	categories	of	the	dimensions.	These	attributes	allow	
to	describe	elements	of	the	category.	As	an	example,	we	may	have	the	attributes	
CEO,	number	of	employees,	total	revenue,	and	so	forth,	to	describe	the	elements	
of	a	category	company	(Jagadish	et	al.,	1999).	There	is	also	another	form	of	het-
erogeneity	that	involves	the	structure	of	fact	tables,	since	different	elements	may	
require	different	measures.	For	example,	while	checking	accounts	have	minimum	
balances,	overdraft	limits,	and	service	charges,	saving	accounts	have	interest	paid,	
and	chargeable	debits	(Kimball,	1996).	The	development	of	techniques	and	tools	
to	support	transformations	for	different	forms	of	heterogeneity	and	irregularities	in	
the data is an open problem of practical significance for the improvement of cur-
rent	OLAP	systems.

Acknowledgments.

This	work	was	supported	by	Millennium	Nucleus,	Center	for	Web	Research	(P04-
067-F),	Mideplan,	Chile.

References

Abiteboul,	S.,	&	Vianu,	V.	(1999).	Regular	path	queries	with	constraints.	Journal
of Computer and System Science, 58(3),	428-452.		

Buneman,	P.,	Fan,	W.,	&	Weinstein,	S.	(1998).	Path	constraints	on	semistructured	
and	structured	data.	In	Proceedings of the Seventeenth ACM Symposium on
Principles of Database Systems,	New	York	(pp.	129-138).

�6 Hurtado & Gutierrez

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Cabibbo,	L.,	&	Torlone,	R.	(1998).	Querying	multidimensional	databases.	In	Pro-
ceedings of the Sixth International Workshop on Database Programming
Languages,	London	(pp.	319-335).	

Chatziantoniou,	D.,	&	Ross,	K.	A.	(1996).	Querying	multiple	features	of	groups	
in	 relational	databases.	 In	Proceedings of the Twenty-Second International
Conference on Very Large Data Bases,	San	Francisco	(pp.	295-306).

Goldstein,	B.	S.	(1981).	Constraints	on	null	values	in	relational	databases.	In	Pro-
ceedings of the Seventh International Conference on Very Large Data Bases,	
Cannes,	France	(pp.	101-110).	

Harinarayan,	V.,	Rajaraman,	A.,	&	Ullman,	J.	 (1996).	 Implementing	data	cubes	
efficiently. In Proceedings of the 1996 ACM International Conference on
Management of Data, Montreal,	Canada	(pp.	205-216).

Hurtado,	C.,	&	Gutierrez,	C.	(2003).	Computing	cube	view	dependencies	in	OLAP	
datacubes.	In	Proceedings of the	Fifteenth IEEE International Conference on
Scientific and Statistical Database Management,	Boston (pp.	33-43).		

Hurtado,	C.,	&	Gutierrez,	C.	(2004).	Equivalence	of	OLAP	dimension	schemas.	
In	 Proceedings of the Third International Symposium on Foundations of
Information and Knowledge Systems,	Wilhelminenburg	Castle,	Austria	(pp.	
176-195).

Hurtado,	C.,	Gutierrez,	C.,	&	Mendelzon,	A.	(2005).	Capturing	summarizability	
with	integrity	constraints	in	OLAP.	ACM Transaction on Databases Systems,
30(3),	854-886.

Hurtado,	C.,	&	Mendelzon,	A.	(2001).	Reasoning	about	summarizability	in	hetero-
geneous	multidimensional	schemas.	In	Proceedings of the Eighth International
Conference on Database Theory	(pp.	375-389).	London.

Hurtado,	C.,	&	Mendelzon,	A.	(2002).	OLAP	dimension	constraints.	In	Proceed-
ings of the Twenty-First ACM Symposium on Principles of Database Systems,	
New	York	(pp.	169-179).

Hurtado,	C.,	Mendelzon,	A.,	&	Vaisman,	A.	(1999).	Maintaining	data	cubes	under	
dimension	updates.	In	Proceedings of the Fifteenth International Conference
on Data Engineering,	Washington,	DC	(pp.	346-355).

Hurtado,	C.,	Mendelzon,	A.,	&	Vaisman,	A.	(1999).	Updating	OLAP	dimensions.	In	
Proceedings of the Second IEEE International Workshop on Data Warehous-
ing and OLAP,	Kansas	City,	Missouri (pp.	60-66).

Huseman,	B.,	Lechtenborger,	J.,	&	Vossen,	G.	(2000).	Conceptual	data	warehouse	
design.	In	Proceedings of the International Workshop on Design and Manage-
ment of Data Warehouses,	Stockholm,	Sweden (pp.	6-16).

Handling Structural Heterogeneity in OLAP ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Jagadish,	H.,	Lakshmanan,	L.,	&	Srivastava,	D.	(1999).	What	can	hierarchies	do	for	
data	warehouses?	In	Proceedings of the Twenty-Fifth International Conference
on Very Large Data Bases,	San	Francisco	(pp.	530-541).

Jarke,	M.,	Lenzerini,	M.,	Vassiliou,	Y.,	&	Vassiliadis,	P.	(1997).	Fundamentals of
data warehouses.	Berlin,	Heidelberg;	New	York:	Springer.

Kimball,	R.	(1995).	The	aggregate	navigator.	DBMS and Internet Systems Magazine.
Retrieved	May	26,	2006,	from	 http://www.dbmsmag.com/9511d05.html

Kimball,	R.	(1996).	The data warehouse toolkit.	New	York:	John	Wiley	&	Sons.
Kimball,	R.	(1997,	August).	A	dimensional	modeling	manifesto.	DBMS and Inter-

net Systems Magazine. Retrieved	May	26,	2006,	from	http://www.dbmsmag.
com/9708d15.html

Lehner,	W.,	Albrecht,	J.,	&	Wedekind,	H.	(1998).	Normal	forms	for	multidimensional	
databases.	In	Proceedings of the	Tenth International Conference on Scientific
and Statistical Database Management,	Capri,	Italy	(pp.	63-72).

Lenz,	H.,	&	Shoshani,	A.	(1997).	Summarizability	in	OLAP	and	statistical	databases.	
In	Proceedings of the Ninth Scientific and Statistical Database Management
Conference,	Olympia,	Washington	(pp.	132-143).

Malinowski,	E.,	&	Zimanyi,	E.	(2004).	OLAP	hierarchies:	A	conceptual	perspective.	
In	Proceedings of the 16th International Conference Advanced Information
Systems Engineering, Riga,	Latvia (pp.	447-491).

Mumick,	I.,	Quass,	D.,	&	Mumick,	B.	(1997).	Maintenance	of	data	cubes	and	summary	
tables	in	a	warehouse.	In	Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data,	Tucson,	Arizona	(pp.	100-111).

Pedersen,	T.,	Jensen,	C.,	&	Dyreson,	C.	(1999).	Extending	practical	pre-aggrega-
tion	in	on-line	analytical	processing.	In	Proceedings of the Twenty-Fifth In-
ternational Conference on Very Large Data Bases,	Edinburgh,	Scotland	(pp.	
663-674).

Pedersen,	T.,	Jensen,	C.,	&	Dyreson,	C.	(2001).	A	foundation	for	capturing	and	query-
ing	complex	multidimensional	data.	Information Systems, 26(5),	383-423.

Rafanelli,	M.,	&	Shoshani,	A.	 (1990).	Storm:	A	statistical	object	 representation	
model.	In	Proceedings of the Fifth International Conference on Scientific and
Statistical Database Management,	Charlotte,	North	Carolina (pp.	14-29).

West,	D.	B.	(1996).	Introduction to graph theory.	Prentice	Hall.

�8 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Chapter.III

Data.Quality-Based.
Requirements.

Elicitation.for.Decision.
Support.Systems

Alejandro Vaisman
Universidad de Buenos Aires, Argentina

Abstract

Today, information and timely decisions are crucial for an organization’s success. A
decision support system (DSS) is a software tool that provides information allowing
its users to make decisions timely and cost effectively. This is highly conditioned
by the quality of the data involved, usually stored in a data warehouse, and by a
sound and complete requirements analysis. In this chapter we show that conven-
tional techniques for requirements elicitation cannot be used in DSS, and present
a methodology denoted DSS-METRIQ,.aimed at providing a single data quality-
based procedure for complete and consistent elicitation of functional (queries) and
nonfunctional (data quality) requirements. The outcomes of the process are a set

Data Quality-Based Requirements Elicitation for Decision Support Systems ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

of requirement documents and a specification of the operational data sources that
can satisfy such requirements. We review the state-of-the-art in the field, and show
that in spite of the tools and methodologies already proposed for the modeling and
design of decision support systems, DSS-METRIQ is the first one that supports the
whole process by means of an integral technique.

Introduction

It	is	a	well-known	fact	that,	among	the	phases	of	the	software	development	pro-
cess, analysis and specification of functional and nonfunctional requirements is a
crucial one. The lack of good requirements specification is a major cause of failure
in	software	development	(Thayer,	2002).	The	software	engineering	community	has	
developed	many	useful	 tools	for	requirements	analysis	 in	 transactional	systems.	
These	kinds	of	systems	deal	with	the	day-to-day	operation	of	an	organization.	De-
cision	support	systems (DSS)	are	of	a	completely	different	kind:	they	are	focused	
on	integrating	data	and	models	in	order	to	improve	the	decision-making	process.	
The	data	that	feed	a	DSS	generally	reside	in	a	data	warehouse.	The	software	de-
velopment	cycle	of	DSS	has	particularities	 that	 require	applying	methodologies	
different	than	the	ones	used	for	operational	systems.	The	reason	for	this	is	twofold:	
on	the	one	hand,	traditional	methodologies	have	been	thought	and	designed	with	
transactional systems in mind; on the other hand, specific methodologies applicable
to	DSS	arose	as	ad-hoc	answers	to	practical	needs,	and	most	of	them	are	just	mere	
enumerations	of	activities	that	must	take	place	in	order	to	implement	the	system,	
focusing	on	populating	the	data	repository	while	ignoring	important	issues	like	the	
impact	of	changes	in	the	operational	data	sources,	or	worse,	if	these	data	sources	
satisfy	the	users’	information	requirements.	New	sources	of	failure	are	present	in	
DSS:	correctness	and	trustworthiness	of	the	information	are	the	basis	of	the	deci-
sion-making	process.	We	do	not	only	need	to	understand	the	user’s	 information	
needs,	but	also	account	for	keeping	the	data	repository	up-to-date	according	to	user	
specifications. Also, update processes and their frequency must be considered, as
well	as	the	analysis	of	the	quality	and	completeness	of	the	data	sources.	
It	follows	that	there	is	a	need	for	techniques	that,	besides	accounting	for	the	software	
process	cycle	and	functional	requirements,	also	consider	the	quality	of	the	informa-
tion	the	system	will	deliver.	There	are	several	reasons	for	this.	For	instance,	most	
of	the	time,	people	developing	information	systems	do	not	consider	the	impact	of	
low	quality	data	(Kimball,	Reeves,	Ross,	&	Thornthwaite,	1998).	Low	data	qual-
ity	is	more	a	rule	than	an	exception.	Just	to	give	an	example,	it	has	been	detected	
in	the	U.S.,	that	approximately	50	to	80%	of	the	computerized	criminal	records	are	
inaccurate,	incomplete,	or	ambiguous	(Strong,	Yang,	&	Wang,	1997).	So	far,	the	
contribution	of	software	engineering	for	addressing	the	problems	stated	has	been	

60 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

limited,	 although	many	 techniques	have	been	proposed	 in	order	 to	 analyze	and	
measure	a	data	quality	requirement.	Some	examples	of	these	techniques	are	GQM	
(goal	question	metric)	(Basili,	Caldiera,	&	Rombach,	1992)	and	QFD	(quality	func-
tion	deployment)	(Akao,1997).
In	summary,	traditional	software	development	methodologies	do	not	apply	to	DSS,	
and	focus	on	software	correctness,	paying	little	attention	to	the	problem	of	data	
quality	and	completeness,	given	that,	in	general,	this	is	not	considered	an	issue	in	
the	requirement	analysis	phase	of	the	software	development	cycle	for	operational	
systems.	Based	on	these	points,	we	propose	a	methodology	called	DSS-METRIQ	
that	integrates	concepts	of	requirements	engineering	and	data	quality,	in	order	to	
provide a comprehensive solution to the requirements elicitation process specifi-
cally	oriented	to	DSS.	

Case.Study

Throughout	the	chapter	we	will	discuss	the	following	case	study.	We	must	collect	
requirements	for	a	DSS	for	a	wholesale	chain	called	“Los	Andes”	(specialized	in	food	
products).	The	chain	has	three	branches	in	the	Argentina	countryside.	The	project	
involves	the	development	of	a	data	warehouse	and	a	DSS	for	supporting	the	daily	
tasks	of	decision	makers.	The	company	has	many	different	sources	of	operational	
data.	We	must	carry	out	the	requirements	elicitation	process,	with	the	following	goals	
in	mind:	discovery	and	documentation	of	user	queries,	addressing	the	information	
quality	required	by	our	customer	(that we must also help to define).	It	will	also	be	
our	task	to	analyze	data	quality	in	each	one	of	the	data	sources,	indicating	for	each	
piece	of	data,	the	data	source	from	which	we	will	obtain	it	and	the	data	quality	we	
can	expect.	Thus,	we	must	specify	the	queries	(functional	requirements)	that	could	
be	addressed	by	the	system	(given	the	available	data	sources)	satisfying	the	data	
quality	levels	imposed	by	our	customer	(nonfunctional	requirements).	There	will	
be	a	requirements	engineering	team,	composed	of	a	project	leader,	a	training	team,	
a	team	for	carrying	out	 the	interviews,	a	data	processing	team,	and	a	dictionary	
manager	(more	on	dictionaries	in	the	following	sections).	Our	customer	provided	
a	list	containing	the	contact	information	of	the	employees	(belonging	to	different	
areas),	who	will	cooperate	in	the	process.	

Contributions and Chapter Organization

We	introduce	a	methodology	(denoted	DSS-METRIQ)	for	requirements	elicitation	
in DSS, aimed at providing an integrated process specification for the complete
and	consistent	analysis	of	functional	(queries)	and	nonfunctional	(data	quality)	re-
quirements	in	DSS.	We	provide	detailed	mechanisms	for	collecting	functional	and	

Data Quality-Based Requirements Elicitation for Decision Support Systems 6�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

nonfunctional	requirements	as	a	whole,	addressing	data	quality	and	completeness	
of	the	operational	data	sources.	We	give	tools	allowing	answering	the	following	
questions:	(a)	can we answer the set of queries required by the user with the data
currently available in the data sources? (b) what is the quality of the answers we
will obtain? (c) does this quality satisfy users’ requirements?	This	is	a	subject	of-
ten	ignored	in	other	proposals.	The	outcomes	of	the	process	are	a	set	of	documents	
and	a	ranking	of	the	operational	data	sources	that	can	satisfy	the	users’	quality	and	
information	requirements,	based	on	two	parameters	denoted local and global data
source performance.	As	far	as	we	are	aware	of,	no	other	proposal	has	addressed	
the	problem	in	this	way.	Of	course,	the	analysis	may	also	trigger	corrective	actions	
over	data	that	do	not	reach	the	required	level	of	quality.	Finally,	each	phase	of	this	
methodology	 needs	 a	 technical	 solution	 from	 the	 software	 engineering	 or	 data	
warehousing	communities.	For	instance,	for	requirements	elicitation	we	adapt	the	
GQM	(goal	question	metric)	methodology.	For	data	source	selection	we	introduce	
a	technique	based	on	QFD	(quality	function	deployment).		
In this chapter we first review related work and study the differences between DSS
and	operational	systems	with	respect	to	requirements	elicitation.	After	presenting	
basic	data	quality	concepts	we	introduce	DSS-METRIQ	and	explain	each	phase	
of	the	methodology	in	detail.	We	conclude	with	a	discussion	on	possible	research	
directions.

Related.Work

The	software	development	cycle	involves	different	stages	or	phases,	each	one	of	them	
composed of a set of activities. The final goal is obtaining a software product reflect-
ing	user	requirements	in	the	best	possible	way.	Waterfall	and	Baseline Management	
are popular models for software development. There are five phases in these models:
requirements	analysis,	design,	coding,	testing,	and	system	integration,	in	sequential	
form.	Modeling	 through	prototypes	 consists	 in	quickly	developing	a	system	for	
helping	to	determine	software	requirements.	Another	popular	technique,	the	Spiral
model	emphasizes	the	idea	that	requirements	cannot	be	determined	in	a	precise	way	
from	the	start,	leading	to	the	idea	of	a	“spiral”	which	includes	a	complete	cycle	that	
must be revised iteratively until the final system satisfies the expected functionality.
In	all	of	these	models,	the	requirements	analysis	phase	is	divided	into	four	main	ac-
tivities: requirement elicitation, analysis and modeling, specification, and validation.
During	requirements elicitation,	requirement	engineers	gain	understanding	of	the	
user needs. A requirements engineer carries out interviews, classifies and integrates
the	information	obtained.	Techniques	like	IBIS	(issue-based	information	system)	
(Christel	&	Kang,	1992),	or	JAD	(joint	application	development),	are	widely	used.	
The	analysis and modeling outcome is the definition of user requirements..The	most	

62 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

popular	methods	for	these	tasks	are	enterprise	modeling,	data	modeling	(through	
entity-relationship	modeling),	object-oriented	techniques,	and	structured	method-
ologies	like	SADT	(structured	analysis	and	design	techniques)	(Ross	&	Schoman,	
1979).	Specification is	the	process	of	generating	the	requirements	documentation.	
CORE	(controlled	requirements	expression)	(Mullery,	1979)	can	be	used	in	this	
step.	The	purpose	of requirements validation	is	to	certify	that	requirements	are	an	
acceptable	description	of	the	system	to	be	implemented.	Inputs	for	the	process	are	
the	requirements	document,	organizational	standards,	and	organizational	knowledge.	
The	output	is	a	list	that	contains	the	reported	problems	and	the	actions	necessary	
to	cope	with	them.	Requirements	reviews	and	requirements	testing	are	common	
techniques	used	for	this	activity.	
Decision support	systems	extract	information	from	a	database	and	use	it	to	support	
the	decision	making	process.	A	DSS	usually	requires	processing	great	volumes	of	
data	for	generating	valuable	information.	Gill	and	Rao	(1996)	classify	these	kinds	
of	systems	as	(a)	data-driven,	which	emphasizes	access	and	manipulation	of	large	
structured	databases;	(b)	model	driven,	which	emphasizes	the	access	and	manipula-
tion	of	a	model;	(c)	knowledge	driven,	which	recommends	actions	to	the	managers,	
often	customized	for	a	certain	domain;	and	(d)	document	driven,	integrating	a	variety	
of	storage	and	processing	technologies.	A	DSS	is	made	up	of:	(a)	database	(typically	
a data warehouse); (b) components for data extraction and filtering, used to extract
and	validate	the	data	taken	from	the	operational	databases;	(c)	query	tools;	and	(d)	
presentation	tools.	A	data warehouse	gathers	data	coming	from	different	sources	of	
an	organization	(Chaudhuri	&	Dayal,	1997).	Data warehousing involves	a	series	of	
processes	that	turn	raw	data	into	data	suitable	to	be	queried.	A	set	of	data	transfor-
mation	processes	denoted	ETL	(Extraction,	Transformation,	Loading)	exports	data	
from	the	operational	databases	(generally	in	heterogeneous	formats),	and	after	some	
depuration	and	consolidation,	load	them	into	the	data	warehouse.	OLAP	(online	
analytical	processing)	tools	are	used	for	querying	the	warehouse.
System development involves three clearly defined phases: design, implementation,
and	maintenance.	However,	in	the	development	cycle	of	traditional	software	system,	
activities	are	carried	out	sequentially,	while	in	a	DSS	they	follow	a	heuristic	process	
(Cippico,	1997).	Thus,	methodologies	for	developing	operational	and	DSS	systems	
are	different.	For	instance,	in	operational systems	(a)	the	development	cycle	is	pro-
cess driven,	based	on	a	stable	data	model;	(b)	data	must	be	normalized	in	order	to	
support transaction processing; (c) hardware is defined in the planning phase, remain-
ing	quite	stable;	and	(d)	there	is	no	periodic	data	loading.	In	DSS,	we	have	(a)	the	
development	cycle	is	data driven;	(b)	data	is	generally	denormalized;	(c)	hardware	
changes	dynamically;	and	(d)	periodical	data	loading	is	a	typical	process.
In	spite	of	the	popularity	gained	by	DSS	in	the	last	decade,	a	methodology	for	soft-
ware	development	has	not	been	agreed	upon.	Thus,	it	is	not	surprising	that	most	
contributions	on	requirements	analysis	for	DSS	came	from	consulting	companies	
and	software	vendors.	The	NCR methodology is	aimed	at	developing	and	main-

Data Quality-Based Requirements Elicitation for Decision Support Systems 6�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

taining	 the	 data	 warehouse	 infrastructure,	 assuring	 data	 quality,	 and	 improving	
performance	encouraging	 the	use	of	 traditional	database	design	 techniques.	The
SAS Institute Rapid Development methodology is based	on	the	argument	that	the	
two	great	sources	of	failure	of	data	warehouse	projects	are	the	lack	of	experience	
and	the	development	of	very	large	projects.	Thus,	this	methodology	tries	to	handle	
such	risk	dividing	the	project	into	units	called	“builds.”	Each	cycle	of	these	builds	
consists	of	the	following	stages:	valuation,	requirements,	design,	implementation,	
final testing, and distribution. Microsoft methodology proposes	 eight	 activities:	
four	devoted	to	creating	the	data	warehouse	and	four	to	reviewing	and	maintaining	
it,	with	feedback	from	the	processes.	Kimball	et	al.	(1998)	propose	a	“federated”	
architecture,	with	data	marts	based	on	star	schemas.	All	the	methods	are	focused	
on	the	development	of	the	infrastructure	for	decision	support	systems,	but	none	of	
them	handles	data	quality	in	a	comprehensive	fashion.	
There	 are	 several	 proposals	 addressing	 the	design	of	 data	warehouses	 and	data	
marts.	Many	of	them	use	some	of	the	techniques	we	propose	in	this	chapter.	How-
ever, these works do not compare with ours because the goals are different:	we	are	
interested	in	the	requirement	elicitation	process	itself,	and	not	in	the	design	process,	
which	belongs	to	a	later	stage.	For	example,	the	work	by	Moody	and	Kortink (2000)	
proposes	the	use	of	the	entity-relationship	model	for	data	warehouse	design.	With	
a	 different	 approach,	Bonifati,	Cattaneo,	Ceri,	 Fuggetta,	 and	Paraboschi	 (2001)	
introduced	an	interesting	requirements-driven	design	methodology	for	data	marts.	
However,	they	focus	on	the	design	stage,	and	only	address	functional	requirements	
in	 the	 requirements	 elicitation	 phase	 (they	 use	GQM	 for	 this	 task).	Vassiliadis,	
Bouzeghoub,	and	Quix (1999)	also	use	GQM,	but	in	this	case	for	identifying	metrics	
that	allow	evaluating	the	quality	of	a	data	warehouse	once	it	has	been	developed.	
Closer	to	our	proposal,	Winter	and	Strauch	(2003,	2004)	introduced	a	demand-driven	
methodology (i.e., a methodology where end users define the business goals) for
data warehousing requirement analysis. They define four steps where they identify
users	and	application	type,	assign	priorities,	and	match	information	requirements	
with	actual	information	supply	(i.e., data	in	the	data	sources).	There	are	several	dif-
ferences	with	the	methodology	we	present	here.	The	main	one	resides	in	that	our	
approach	is	based	on	data	quality,	which	is	not	considered	in	the	mentioned	paper.	
Moreover,	although	the	authors	mention	the	problem	of	matching	required	and	sup-
plied	information,	they	do	not	provide	a	way	of	quantifying	the	difference	between	
them.	On	the	contrary,	we	give	a	method	for	determining	the	data	sources	that	best	
match the information needs for each query defined by the user. Paim and Castro
(2003)	introduced	DWARF,	a	methodology	that,	 like	DSS-METRIQ,	deals	with	
functional	and	nonfunctional	requirements.	They	adapt	requirements	engineering	
techniques and propose a methodology for requirements definition for data ware-
houses.	For	nonfunctional	requirements,	they	use	the	extended-data	warehousing	
NFR	Framework	(Paim	&	Castro,	2002).	Although	DWARF	and	this	framework	
are	close	to	the	rationale	of	DSS-METRIQ,	the	main	differences	are	(a)	we	give	

64 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

a	more	detailed	and	concrete	set	of	tools	for	nonfunctional	requirements	elicita-
tion; (b) we provide a QFD-based method for data source ranking on a quantifiable
basis;	and	(c)	we	give	a	comprehensive	detail	of	all	the	processes	and	documents	
involved.	Prakash	and	Gosain (2003)	also	emphasize	the	need	for	a	requirements	
engineering	phase	in	data	warehousing	development.	This	phase	precedes	the	logi-
cal,	conceptual,	and	physical	design	phases	they	propose	as	components	of	the	data	
warehouse	development	process.	They	propose	the	GDI	(goal	decision	informa-
tion)	model.	However,	the	authors	do	not	provide	a	level	of	detail	that	may	allow	
a	more	in-depth	analysis.	
In	summary,	although	our	proposal	intersects	many	other	similar	ones,	it	integrates	
the	most	popular	techniques,	resulting	in	a	comprehensive	and	self-contained	meth-
odology where each phase has clearly defined steps, as we will see in the follow-
ing	sections.	Most	of	all,	DSS-METRIQ	addresses	the	overlooked	problem	of	data	
source qualification and selection.

Quality.Concepts

When	speaking	about	quality,	people	do	not	always	refer	to	the	same	concept	(Bo-
browski,	Marré	&	Yankelevich,	1999).	Many	techniques	have	been	developed	for	
measuring	quality.	In	what	follows,	we	survey	the	ones	we	are	going	to	use	in	the	
remainder	of	this	chapter.

Goal.Question.Metric.(GQM).

GQM is a framework for metric definition (Basili et al., 1992). It defines a top-down
procedure	allowing	for	specifying	what	is	going	to	be	measured,	and	to	trace	how	
measuring	must	be	performed,	providing	a	framework	for	result	interpretation.	The	
outcome of the process is the specification of a system of measurements that con-
sists	of	a	set	of	results	and	a	set	of	rules	for	the	interpretation	of	the	collected	data.	
The model defines three levels of analysis: (a) conceptual (Goal), where a goal for
a product, process, or resource is defined; (b) operational (Question): at this level,
a set of questions is used for describing the way a specific goal will be reached; and
(c)	quantitative	(Metric):	the	metric	associated	with	each	question.	The	model	is	a	
hierarchical structure that starts from a goal, follows with a set of questions refining
the	goal,	and	ends	with	the	metrics	that	will	help	answer	the	questions.	For	example,	
if	our	goal	consists	in	measuring	the	legibility	of	a	certain	text,	the	question	would	
be	“what	is	the	level	of	readers’	comprehension?”	The	metric	will	be	the	number	
of	readers	who	understood	the	text.

Data Quality-Based Requirements Elicitation for Decision Support Systems 6�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Quality.Function.Deployment.(QFD)

Quality	function	deployment	(QFD)	(Akao,	1997)	is	a	method	proposed	in	the	1960s	
by Yoji Akao in Japan. It was first conceived as a method for the development of
new	products	under	the	framework	of	total	quality	control.	QFD	aims	at	assuring	
design	quality	while	the	product	is	still	in	its	design	stage.	The	central	instrument	
of	the	methodology	is	a	matrix	called	“House	of	Quality.”	This	matrix	is	composed	
of information blocks, and it is filled out in a sequence of steps: first, interviews
are	used	to	model	customer	needs.	Here,	requirements	are	expressed	in	a	vague	
or ambiguous way, and must be refined. Then, technical solutions for solving user
needs are proposed. The process iterates until it finds all the solutions. With the
results	obtained	in	the	previous	steps,	the	matrix	of	interrelationships	is	completed.	
After	identifying	the	relationships	between	technical	factors,	the	roof	of	the	House
of Quality is completed and possible conflicts between technical solutions are de-
tected.	Two	tables	are	completed:	customer’s	valuations	and	the	valuations	of	the	
technical	solutions.	The	last	two	steps	involve	prioritizing	user	requirements	and	
prioritizing	technical	requirements.	

Data.Quality

Organizations	are	conscious	of	data	quality	problems.	Nevertheless,	efforts	generally	
focus	on	data	accuracy,	ignoring	many	other	attributes	and	important	quality	dimen-
sions (Wang & Strong, 1996). Thus, quality validation and verification techniques
are	still	required.	Usually,	these	techniques	concentrate	only	on	software	and	assume	
that	external	agents	provide	the	data	(Bobrowski	et	al.,	1999).	Poor	information	
quality	is	due	to	several	causes:	(1)	Problems	in	the	processes:	to	understand	the	
processes	that	generate,	use,	and	store	the	data,	it	is	essential	to	understand	data	
quality.	In	an	organization,	the	owners	of	the	processes	must	be	responsible	for	the	
quality	of	the	data	they	produce	or	use.	(2)	Problems	in	the	information	systems:	
often	related	to	poor	system	development	(incomplete	documentation	or	systems	
that	have	been	extended	beyond	their	original	intention).	(3)	Problems	of	policies	
and	procedures:	a	policy	about	data	must	cover	security,	privacy,	inventory	of	the	
information	that	is	controlled,	or	data	availability.	(4)	Problems	in	data	design:	more	
often than not, data are used for tasks they were not defined for.

Data.Quality.Dimensions.

There are basically two ways of defining data quality: the first one uses a scientific
approach and defines data quality dimensions rigorously, classifying them as dimen-
sions	that	are	or	are	not	intrinsic	to	an	information	system	(Wang,	Storey,	&	Firth,	

66 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

1995).	The	second	one	is	a	pragmatic approach aimed at defining data quality in
an operational fashion (Wand & Wang, 1996). Wang & Strong (1996) identified
four	data	quality	categories	after	evaluating	118	variables	(Wang	&	Strong,	1996):	
(1)	intrinsic	data	quality;	(2)	contextual data quality (defines the quality of the in-
formation	within	the	context	of	the	task);	(3)	data quality for data representation:	
determines	if	the	system	presents	the	information	in	a	concise,	consistent,	under-
standable	way;	and	(4) data	quality	regarding	data	access (defines quality in terms
of	the	role	of	the	information	system	in	the	provision	of	the	data).	Table	1	sum-
marizes	the	results	of	academic	research	on	the	multiple	dimensions	applicable	to	
information	quality,	comparing	results	from	Delone	and	McLean	(1992),	Hoxmeier	
(2000),	Jarke	and	Vassiliou	(1997),	Lee,	Strong,	Kahn,	and	Wang	(2002),	Wand	and	
Wang	(1996),	and	Zmud	(1978).

DSS-METRIQ.Overview.

In	this	section	we	introduce	DSS-METRIQ. The methodology is composed of five
phases: scenario, information gathering, requirements integration, data source se-

Proposal Intrinsic Contextual Representation Accessibility

Lee	et	al.

Accuracy
Credibility
Reputation
Objectivity

Understandable	data
Concise	representation
Interpretability
Consistency

Added	value
Relevance
Completeness
Timeliness

Accessibility
Security
Easy	operation

Zmud Accuracy Reliability
Timeliness

Order
Legibility

Jarke	and	Vassiliou

Accuracy
Consistency
Completeness
Credibility

Relevance
Timeliness
Usefulness
Up-to-date
Volatility

Interpretability
Syntax
Semantics
Alias
Source

Accessibility
Availability
Privileges

Delone	and	McLean	
Reliability
Accuracy
Precision	

Relevance
Timeliness
Usefulness
Content
Completeness
Opportunity

Understanding
Legibility
Clarity
Format
“Look	and	feel”
Conciseness
Uniqueness
Comparability

Usefulness
Accessibility
Convenience

Wand	and	Wang Correctness
Ambiguity Completeness Meaning

Table 1. Quality dimensions

Data Quality-Based Requirements Elicitation for Decision Support Systems 6�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

lection,	and	document generation,	and	from	any	phase	it	is	possible	to	go	back	to	
any	former	one.	The	whole	process	can	be	summarized	as	follows:	on	the	one	hand,	
the data consumer’s functional requirements are analyzed, unified, and documented.
On	the	other	hand,	the	quality	of	data	in	the	data	sources	is	collected	from	the	data	
producer	users.	This	information	is	then	analyzed	as	a	whole,	and	a	collection	of	
documents	 is	produced.	These	documents	will	allow	matching	 the	requirements	
with	the	available	data. In	the	remainder	of	this	section	we	introduce	the	general	
framework	of	the	methodology,	and	the	conceptual	basis	over	which	it	is	built.	Each	
phase	of	the	methodology	will	be	described	in	detail	later	in	this	chapter.

Framework

We first define the participants, concepts, techniques, and tools that will be used in
the	requirement	analysis	process.	

•	 Team: The methodology defines the following roles and participants in the team
that	will	carry	out	the	project:	(a)	project	leader:	manages	the	working	team	and	
interacts	with	the	customer;	(b)	training	leader:	carries	out	the	training	of	the	users	
on	the	concepts,	methodologies,	or	technologies	associated	with	the	project;	(c)	
requirements	engineer:	performs	requirements	elicitation,	working	jointly	with	
the	users	(must	be	an	experienced	professional);	(d)	query	and	data	manager:	
analyzes	the	queries;	and	(e)	information	administrator:.deals	with	changes	in	
the	information	that	supports	the	methodology	(dictionaries,	forms,	etc.).	

• Users:.Any	person	participating	 in	 the	project	 is	considered	a	user.	Users	
to	be	interviewed	are	(a)	data producers, who	will	participate	in	interviews	
aimed	at	understanding	data;	(b)	data consumers,	who	will	be	interviewed	
for defining the queries that will be posed to the system; (c) referent users are
users with a higher hierarchy in the organization than the ones defined in (a)
and	(b);	referent	users	participate	in	interviews	where	the	scope	of	the	system	
and priorities are defined. She also solves conflicts between requirements of
different users. Priorities are defined for users, ranging from 1 to 5. Users are
associated	to	domains	(sales,	acquisitions).	Each	domain	has	a	priority,	also	
ranging	between	1	and	5.

• Data.sources: DSS-METRIQ defines two kinds of data sources: physical and	
logical.	The	former	are	sources	where	data	are	actually	stored.	The	latter	are	
sets	of	data	sources	producing	a	data	element	(i.e.,	set	of	physical	data	sources	
producing	a	view).

Example.1:	The	attribute	daily_sales	is	stored	in	the	table	Daily_Sales_
Summary,	belonging	to	the	operational	database	SalesCentral.	This	da-

68 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

tabase	is	a	physical	data	source.	The	attribute	buy_sell_daily_balance	is	
computed	as	the	difference	of	two	attributes	representing	daily	buys	and	
sales,	that	are	located	in	two	different	tables,	in	two	different	databases:	
the	“BuysCentral”	database	and	the	“SalesCentral”	database.	Thus,	buy_
sell_daily_balance	is	a	logical	data	source.	We	will	give	this	data	source	
a	name,	say	LDS_1	(standing	for	Logical	Data	Source	1).

• Interviews:.DSS-METRIQ	considers	two	kinds	of	interviews:	(a)	group	inter-
views:	in	the	requirements	phase,	JAD	is	used	(Christel	&	Kang,	1992);	and	(b)	
individual	interviews:	the	user	requirements,	mainly	from	the	data	consumers,	
can	be	obtained	through	traditional	structured	or	unstructured	interviews.

Supporting.Elements

DSS-METRIQ	provides	elements	for	supporting	the	management	of	the	informa-
tion	collected	throughout	the	process.	These	elements	are	forms,	matrices, a data
dictionary, and	an aggregations dictionary.	Forms	are	elements	that	register	the	
collected	information.	As	usual,	forms	are	divided	in	two	main	sections:	the	heading
and	the	body.	The	heading	contains	name	of	form,	phase	of	the	methodology,	step	
within	the	phase,	version,	and	revision	number.	In	the	body	of	the	form,	the	col-
lected	or	generated	information	is	written.	Of	course,	forms	can	be	updated	during	
the	process.	Thus,	requirements	evolution	is	supported	in	this	way	(meaning	that	
any change that occurs during the process can be reflected and documented in the
forms).	Matrices	are	equipped	with	a	certain	intelligence	that	allows	weighting	the	
information	contained	in	the	forms,	in	order	to	qualify	and	prioritize	requirements.	
A	data	dictionary	is	a	catalogue	of	data	that	contains	names,	aliases,	and	detailed	
descriptions	of	the	atomic	elements	that	compose	the	user	queries,	data	sources,	
and the data warehouse. Its purpose is the definition of a common meaning for each
one	of	these	elements,	allowing	expression	of	user	requirements	on	the	basis	of	a	
common	terminology.	It	can	be	updated	throughout	the	process.	The	aggregations	
dictionary is	a	catalogue	containing	information	on	dimensions,	dimension	levels,	
and	aggregations	(Chaudhuri	&	Dayal,	1997).	

Data.Quality.Requirements

DSS-METRIQ	 is	a	quality-based	and	quality-led	methodology.	 Its	main	goal	 is	
to	integrate	functional	requirements	and	data	quality.	As	such,	the	data	quality	di-
mensions to be used must be defined. We adapted and integrated the main existing
proposals	commented	previously,	considering	not	only	the	relevance	of	each	quality	
dimension,	but	also	the	possibility	of	quantifying	it.	Based	on	this,	we	will	work	

Data Quality-Based Requirements Elicitation for Decision Support Systems 6�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

with	the	following	quality	dimensions:	accuracy, consistency, completeness, timeli-
ness, query frequency, source availability,	and	accepted response time.	Associated	
with	timeliness,	we	also	add	currency	and volatility.	

•	 Accuracy: 	Measures	how	close	to	the	value	in	the	real	world	the	data	under	
consideration are. Another vision, from the ontological point of view, defines
inaccuracy	as	the	probability	that	an	information	system	represents	an	incor-
rect	state	of	 the	real	world	(Wand	&	Wang,	1996).	The	accuracy	of	a	data	
warehouse is influenced by two main factors: (a) accuracy of the data sources
and	(b)	the	error	factor	that	the	ETL	process	can	introduce.	

•	 Consistency:.	We	adopt	the	ontological	point	of	view,	which	describes	con-
sistency	as	the	“logical	consistency”	of	information.	The	underlying	idea	is	
that	given	two	instances	of	representation	for	the	same	data,	the	value	of	the	
data	must	be	the	same.	For	example,	if	it	is	known	that	the	sales	of	a	company	
exceed	a	certain	monthly	value	v, we expect the database to reflect this fact.

•	 Completeness:.Is the information system able to represent every significant
state	of	the	real	world.	The	methodology	presented	here	emphasizes	repre-
sentation	instead	of	structure.	For	instance,	if	there	are	250	employees	in	the	
organization,	we	expect	at	least	one	record	for	each	one	of	them	to	be	in	the	
database.	

•	 Timeliness:.It	measures	the	delay	between	a	change	in	the	state	of	the	real	
world	and	the	corresponding	data	warehouse	update.	This	dimension	is	tightly	
associated	with	other	two:	currency	and	volatility.	Timeliness	is	affected	by	
three	main	factors:	(a)	speed	at	which	the	state	of	the	information	system	is	
updated	after	the	changes	occur	in	the	real	world;	(b)	frequency	of	change	of	
the	state	of	the	real	world;	and	(c)	the	instant	when	the	data	are	actually	used.	
The first aspect depends on the design of the system, while aspects (b) and (c)
are	design-independent.

•	 Currency: Measures	the	age	of	the	data.	It	is	computed	as	follows	(Wang	&	
Reddy,	1992)"	

	 Currency(d)	=	tc	–	t0

	 Where	d	is	the	data	element	under	consideration,	tc	is	the	present	time,	and	t0	
is	the	instant	in	the	real	world	when	the	data	element	was	created.	An	alterna-
tive definition is:

	 Currency(d)=	tf	+	(tl	+	te	+	tq)	

�0 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

	 tf		=	time	in	the	data	source:	the	time	elapsed	between	the	instant	when	the	data	
were	“born”	in	the	real	world	and	stored	in	the	data	source,	and	the	moment	
when	they	are	transferred	to	the	data	warehouse.

	 tl	=	the	duration	of	the	loading	process.
	 te	=	time	elapsed	between	the	moment	when	data	are	available	for	querying	in	

the	data	warehouse,	and	the	moment	when	the	query	is	posed.	
	 tq	=	the	query	response	time.
•	 Volatility:.It	represents	the	length	of	the	interval	during	which	data	are	valid	

in the real world (Wang & Reddy, 1992). Pipino, Lee, and Wang (2002) define
Timeliness as	a	function	of	currency	and	volatility:

	 Timeliness	(d)=MAX	[1–currency	(d)/	volatility	(d),	0]	s	,	where	s	>	0

 The coefficient s	(not	considered	in	our	methodology)	is	denoted	sensitivity;	
it reflects the criteria of the analyst, and depends on the task being performed.
Timeliness	ranges	between	0	(worst	case)	and	1	(desirable	value).

•	 Data source availability:	It	is	the	time	during	which	the	data	source	is	avail-
able	(Jarke,	Lenzerini,	Vassiliou,	&	Vassiliadis,	2003).	

•	 Expected.query.response.time:	It	is	the	maximum	accepted	time	for	getting	
the	answer	to	a	query.

•	 Query.frequency: It	is	the	minimum	time	between	two	successive	queries.

Measuring.Quality.

There	are	many	different	ways	of	analyzing	and	measuring	the	required	data	qual-
ity parameters. Thus, it is necessary to define a common way of specifying user
needs and measuring whether the DSS or the data warehouse will be able to fulfill
the	minimum	levels	of	quality	required.	To	this	end,	we	propose	to	apply	GQM	to	
each one of the dimensions defined previously. This technique is used for specifying
user	requirements	and	measuring	the	actual	values	for	data	quality	in	the	available	
data	sources.	Due	to	space	constraints,	next	we	only	show	how	the	technique	is	
applied	to	the	accuracy, consistency,	and	completeness dimensions.	For	accuracy
we	have	the	following:

a.		 Specifying	user	requirements	(data consumer users).
•	 Goal:	Specify	the	level	of	accuracy	required	for	each	data	element	in	a	

query.

Data Quality-Based Requirements Elicitation for Decision Support Systems ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

• Question:	What	is	the	maximum	acceptable	difference	between	the	answers	
obtained	and	the	actual	value	of	the	data	element	in	the	real	world?	

• Metric:.The	user	must	specify	the	accepted	difference	(in	%)	between	
the	value	of	a	data	element	in	the	data	warehouse	and	its	value	in	the	
real	world	(Quix,	Jarke,	Jeusfeld,	Vassiliadis,	Lenzerini,	Calvanese,	&	
Bouzeghoub,	2002).

b.		 Measuring	accuracy	in	the	data	sources	(data producer users).
•	 Goal:.Determine	the	accuracy	of	the	data	in	each	source.
•	 Question:.What	is	the	divergence	between	the	value	of	the	data	in	the	

source	and	in	the	real	world?	
•	 Metric:.Accuracy of	the	data	source	for	a	certain	attribute.	
•	 Measuring.methodology: Given	a	representative	sample	of	the	data	in	the	

real world, we define the accuracy of the data source empirically as:
	

	 Accuracy	=		[MAX]	*	100	((X	-	Xreal)^2/Xreal)	

	
	 where	X	and	Xreal	are	the	data	in	the	sample	and	in	the	real	world,	re-

spectively.	

Regarding	consistency, if	the	condition	is	mandatory	for	the	data	element	under	con-
sideration, we require a 100% level of fulfillment. Consistency in the data sources
is	measured	obtaining	 samples	 from	each	 source	 and	measuring	 the	number	of	
inconsistent	records	with	respect	to	a	user	query.	This	means	that	the	user	knows	
in	advance	the	answer	to	this	query	over	the	sample.	Analogously, completeness is	
specified as in the previous case and measured from a data sample, posing a set of
queries	over	this	sample	and	applying	the	following	formula:	

(#	of	queries	with	incomplete	answers	/	#	of	queries)	*	100

where	an	incomplete	answer	is	one	such	that	a	record	(or	a	part	of	it)	is	missing	
(remember	that	we	know	in	advance	all	the	records	from	the	sample	that	satisfy	the	
query).	We	proceed	analogously	for	the	other	quality	dimensions.	This	allows	deter-
mining	which	data	sources	can	be	considered	apt	for	developing	the	DSS,	meaning	
that if a data source does not fulfill the minimum bound for a quality dimension,
either	data	cleaning	methods	are	applied	or	the	data	source	must	be	discarded.

�2 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Integrated.Requirement.Analysis.

After finishing the interview phase, and when all functional and quality require-
ments	have	been	obtained,	information	is	consolidated,	yielding	a	single	require-
ments	document	that	will	be	input	for	the	later	phases	of	design.	In	this	process	we	
need to establish priorities and solve conflicting requirements. Thus, we define a
set	of	priorities	for	each	functional	and	nonfunctional	requirement.	Conceptually,	
this	priority	indicates	the	level	of	importance	of	the	requirement.	Priorities	are	as-
signed	a	number	between	1	and	5	as	follows:	optional	requirement	=	1;	low	impor-
tance	requirement	=	2;	intermediate	importance	requirement	=	3;	high	importance	
requirement = 4; mandatory requirement = 5. When two conflicting requirements
have	the	same	priority,	a	high-level	user	must	decide	which	one	will	be	considered.	
Once conflicts are solved, requirements validation is	performed.	

•. Data.source.selection.and.document.generation:.With	the	information	col-
lected	in	the	previous	phases,	interviews	are	carried	out	with	data	producer	
users	in	order	to	determine	the	quality	of	data	in	the	data	sources,	with	the	goal	
of	matching	user	requirements	and	available	data. As	this	is	the	cornerstone	
of	our	methodology,	we	will	explain	it	in	detail	in	the	next	section.	

DSS-METRIQ.in.Detail

In	 this	section	we	describe	 the	phases	of	 the	methodology,	giving	details	of	 the	
processes	within	each	phase.	DSS-METRIQ	can	be	adapted	to	the	most	used	soft-
ware	development	models,	like	waterfall,	spiral,	or	prototyping.	As	we	explained	in	
the previous section, the methodology has five phases, each one grouping together
tasks	that	are	conceptually	related:	scenario,	information	gathering,	requirements	
integration,	data	source	selection,	and	document	generation.	Each	phase	consists	
of	a	set	of	atomic	steps.	In	the	following	sections	we	describe	each	phase	in	terms	
of	a	set	of	initial requirements,	a	sequence	of	steps,	a	set	of	forms,	and	the	output	
of	the	phase	(the	information	obtained).	During	the	process,	several	documents	and	
forms will be manipulated, namely (a) master files, to be denoted with the prefix
MAS;	(b)	hierarchy	documents	(e.g., dimension	hierarchies,	user	hierarchies),	with	
prefix HIE; (c) dictionaries (data and aggregation); (d) query forms, with prefix
QRY,	containing	the	most	common	queries	that	the	user	will	pose	to	the	system;	
(e) requirements forms, with prefix REQ; and (f) matrices for processing the in-
formation obtained (with prefix MAT). Due to space limitations we will not show
all	of	these	documents,	but	we	will	describe	their	content	and	give	examples	from	
our	case	study.

Data Quality-Based Requirements Elicitation for Decision Support Systems ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Phase.I:.Scenario.

The	goal	of	this	phase	is	to	introduce	the	project	to	the	different	levels	of	the	com-
pany,	building	a	consensus	about	the	scope	and	boundaries	of	the	project	(e.g., users,	
domains), priorities, and the initial configuration of the information.
The input	of	this	phase	consists	of	(1)	details	of	the	project;	(2)	initial	list	of	do-
mains	involved;	and	(3)	scope	and	list	of	participants	of	the	introductory	meetings.	
The	output	of	the	phase	is	a	set	of	documents	containing	(1)	domains	and	domain	
hierarchy	 (MAS_DOM);	 (2)	 users	 and	user	 hierarchy	 (MAS_USR);	 (3)	 quality	
dimensions	(MAS_QTY);	and	(4)	data	dictionary	(DIC_DATA);	aggregation	dic-
tionary	(DIC_AGGR).	The	steps	of	this	phase	are	skills acquisition and interviews
with referent people.	
During skills acquisition,	lectures	are	given	to	the	project	team	in	order	to	unify	
concepts	to	be	addressed	in	the	process.	In	the	project presentation	step,	the	project	
is presented to the company’s decision levels, explaining goals, potential benefits,
impact,	and	the	working	methodology.	In	the	global definitions	step,	JAD	meetings	
are	carried	out,	aimed	at	obtaining	consensus	on:

a. Domains: sectors	that	will	use	the	data	warehouse	(e.g., Sales	Department).	The	
form MAS_DOM is produced, with fields domain name, domain responsible, con-
tact	information,	and	relevance	(a	number	between	1	and	5)	of	the	domain	within	
the	organization.	For	example,	in	our	case	study,	the	MAS_DOM	form	contains	
the	line	<D1, Sales, Jose Hernandez, ext. 2162, 5>, stating	that	Jose Hernandez is	
responsible	for	the	Sales domain	(with	domain	id	D1),	can	be	contacted	on	phone	
extension 2162, and	the	domain	has	the	highest	importance	(5).

b.			 Quality.dimensions: The final set of quality dimensions to be considered,
taking	into	account	organizational	policies,	goals,	scope,	development	time,	
and	preferences.	This	may	imply	pruning	the	initial	set	of	requirements.	The	
form	MAS_QTY	is	produced.	In	our	running	example,	four	quality	dimen-
sions	were	chosen:	Accuracy, Timeliness, Consistency, and Completeness.

c.	 Initial.data.dictionary: An	initial	collection	of	terms	that	will	become	the	
common	vocabulary	to	be	used	throughout	the	software	development	cycle.	
The	form	DIC_DATA	is	produced.	A	sample	record	in	the	data	dictionary	for	
the	“Los	Andes”	project	is	<D5, customer, customer name, account>,	stating	
that	there	is	a	data	element	with	id	=	D5,	denoted	customer,	representing	a	
customer’s name,	and	referred	also	with	the	alias	account.

d.		 Initial.aggregations.dictionary:	The	goal	of	this	dictionary	is	to	record	infor-
mation	regarding	facts	and	dimensions	to	be	used	in	later	phases	of	the	proj-
ect,	in	order	to	produce	the	preliminary	star	schema.	The	form	DIC_AGGR	
is	produced.	In	our	project,	a	record	in	the	aggregations	dictionary	looks	like	

�4 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

<D13, customerId,	no, sale|purchase, Accounts, customer,	10, days>.	This	
record	states	that	there	is	a	data	element	with	id	=	D13,	with	name	custom-
erId, that	does	not	represent	a	fact;	the	data	element	is	a	level	in	the	Accounts
dimension,	denoted	customer,	having	a	volatility	of	10 days.

In	the	referent people interviews	step,	the	users	that	will	participate	in	the	project	are	
defined, and information about them is registered. The file MAS_USR is produced.
In our project, a record in this file is <U1, Jose Hernandez, D1, referent, 5>,	mean-
ing	that	user U1 named	Jose Hernandez	belongs	to	the	domain	D1	and	is	a	referent
user	with	hierarchy	level	5 (the	highest	one).	For	another	user	type	we	have	<U2,
Maria Lopez, D1, data consumer, 1>.	
	
Phase.II:.Information.Gathering.

The	phase’s	goal	is	capturing	and	documenting	functional	(queries)	and	nonfunctional	
(quality) requirements, taking into account the scope defined in Phase I. The output	
of	the	phase	includes	(1)	a	list	of	the	queries	expected	to	be	posed	to	the	system;	
(2)	data	quality	requirements	forms;	and	(3)	a	quality	dimensions	hierarchy.	Next	
we	describe	the	steps	of	this	phase.

•	 Interviews.with.users.and.referent.people:	Aimed	at	documenting	queries	
and	 the	associated	quality	parameters.	Each	user	provides	a	 list	of	queries	
(expressed	as	questions	in	English)	the	user	needs	for	a	daily	task.	Initially,	
the	vocabulary	 is	unrestricted.	However,	 certain	 terms	may	have	different	
meanings	for	different	users,	or	team	participants.	For	example,	“the	best	cus-
tomer”	or	“the	largest	source	of	buying	orders.”	These	expressions	are	disam-
biguated	and	converted	to,	for	example,	“best	customer	is	the	one	averaging	
buying	orders	for	more	than	$1000	monthly.”	The	analyst	must	identify	these	
kinds	of	ambiguous	expressions	and	translate	them	as	explained.	The	form	
QRY_USR	is	produced.	This	form	contains,	for	each	user	and	query,	(1)	user	
ID;	(2)	a	query ID (a	unique	value	of	the	form	“Q”	plus	a	sequential	number);	
(3)	the	query	expressed	in	English;	(4)	a	priority	for the	query:	the	require-
ments	engineer	must	guide	the	user	in	this	task,	avoiding	overestimating	the	
query	hierarchy;	(5)	a	query frequency	(the	minimum	elapsed	time	between	
two	instances	of	the	same	query);	(6)	the	accepted response time (maximum	
time	required	for	getting	the	query	answer);	and	(7)	a	global priority for the	
query.	The	global priority is left blank and will be defined in a later phase.
As	an	example,	user	U2	(Maria	Lopez)	has	declared	that	a	query	she	will	be	
posing	regularly	is	“Number of monthly contracts per sales representative.”

Data Quality-Based Requirements Elicitation for Decision Support Systems ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

The	entry	in	QRY_USR,	for	user	U2	will	be	<Q1,	Number of monthly…,5,
24hs,50sec>.

•. Query.analysis:	here	we	perform	data	recollection	and	validation	against	the	
data	dictionary.	The	goal	of	the	former	is	the	discovery	of	atomic	data	required	
for satisfying each query defined in the previous step. However, initially the
QRY_USR	form	may	contain	queries	with	 redundant,	ambiguous,	or	even	
incorrect	terms.	Thus,	analysts	and	users	review	the	queries	and	agree	on	a	
(possibly)	new	set	of	queries,	using	the	information	obtained	from	the	data	and	
aggregations	dictionaries.	For	example,	in	query	Q1	from	user	U2,	the	word	
contracts	will	be	replaced	by	the	word	sales,	according	to	the	information	in	
the	data	dictionary.	These	queries	must	be	validated	against	the	data	diction-
ary,	and	all	terms	not	present	in	this	dictionary	must	be	added,	using	the	form	
DIC_DATA. This is a cyclic process, which results in a final QRY_USR form
where	data	referred	in	the	queries	are	absolutely	consistent	with	data	in	the	
dictionaries.	

•	 Preliminary identification of facts, dimensions, and aggregations:	The	
analyst	tries	to	identify	the	underlying	facts	and	dimensions	from	the	queries.	
This	is	a	manual	or	semiautomatic	process	(for	example,	this	process	can	make	
use	of	one	of	the	many	algorithms	that	use	an	entity-relationship	diagram	for	
obtaining	the	star	schema	for	the	data	warehouse),	which	includes	the	valida-
tion	against	the	aggregations	dictionary	DIC_AGGR	(updating	this	dictionary,	
if	necessary).	

•	 Quality.survey.interviews:.after	the	queries	are	validated,	a	list	of	data	ele-
ments will be extracted from the query definitions collected in the former step.
These	are	the	data	elements	that	will	be	required	for	answering	the	queries.	
Recall	that	for	each	data	element	there	is	an	entry	in	the	data	dictionary.	The	
quality requirements for these data elements is then defined and registered in
three forms: QRY_QTY I, QRY_QTY II, and QRY_QTY III. The first one
contains,	 for	 each	query,	 the	 following	 information:	 (1)	Query	 ID	and	 (2)	
Data ID: one for each data element in the query. This is the identifier of the
element	in	the	data	dictionary.	All	data	elements	directly or indirectly	related	
to	the	query	must	be	included.	For	example,	if	a	query	asks	for	the	“Average
monthly sales,” although	it does	not	directly	include	the	dollar	value	of	each	
sale,	this	value	is	involved	in	the	computation	of	the	average,	so	we	need	to	
specify	its	quality	requirement;	(3)	description	of	the	element;	(4)	aggregation:	
indicates	if	the	data	expresses	a	dimension	level;	(5)	range	(valid	range	for	
the	data	element);	(6)	timeliness;	and	(7)	accuracy.	(Timeliness	and	accuracy	
apply	to	our	case	study,	other	cases	may	require	different	quality	dimensions).	
The	other	two	forms,	QRY_QTY	II	and	QRY_QTY	III,	specify	consistency	
and	completeness	requirements	respectively.

�6 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Example.2:.In	our	case	study,	in	the	form	QRY_USR,	the	entry	for	query	
Q2,	informed	by	user	U5	(George	Martinez)	reads:	“Top	50	customers,	
among	the	customers	with	monthly	average	sales	higher	than	$1500.”	
This	query	includes	the	following	data	elements:	D1	(sales),	D4	(month),	
D5	(customer	name),	D7	(year),	and	D13	(customerId).	For	each	of	these	
elements,	there	is	an	entry	in	form	QRY_QTY1.	For	instance,	<Q2,	D1,	
sales,	NO,	-,	high,	10>,	meaning	that	in	query	Q2,	data	element	D1,	rep-
resenting	sales,	will	not	be	used	to	aggregate,	requires	a	“high”	value	for	
timeliness,	and	a	minimum	accuracy	of	10%	(i.e.,	maximum	accepted	
divergence	between	data	and	real	world	value).	Analogously,	form	QRY_
QTYII	contains	the	consistency	conditions	for	data	D5	in	query	Q2.	The	
condition	ID	is	Q2C,	and	the	description	is	“the	best	customers	must	be	
the ones classified as ‘international.’ ” For D5, consistency is mandatory.
The	form	QRY_QTYIII	records	completeness	conditions	for	data	element	
D5	in	query	Q2.	The	condition	states	that	“all	customers	registered	since	
2001	must	be	in	the	database,”	and	it	is	also	mandatory.

• Prioritizing quality factors:	The	user	assigns	a	priority	to	quality	dimensions.	
For	instance,	some	departments	may	be	more	interested	in	the	accuracy	of	
the	reported	data	than	in	timeliness.	This	criteria	is	determined	for	each	user	
and applied to each query posed. The form HIE_QTY is filled out, containing,
for	each	quality	dimension,	the	dimension’s	name	and	a	priority	(a	number	
between	1	and	5).	

Example.3:.In	our	running	case	study,	we	have	four	quality	dimensions,	
denoted	F1	to	F4:	accuracy,	timeliness,	consistency,	and	completeness.	
User U2, from the Sales Department (domain D1) has defined the follow-
ing	priorities:	5,5,4,3,	respectively.	User	U3,	from	domain	D2	(Purchasing	
Department) defined these other set of priorities: 4,3,5,1, respectively.

Phase.III:.Requirements.Integration

In this phase, requirements from all users and domains are unified, using a criteria
based	on	QFD	(Akao,	1997).	In	the	input	of	the	phase	we	have	(1)	a	query	list;	(b)	
a	hierarchy	of	quality	dimensions;	(3)	a	data	quality	requirements	form;	(4)	data	and	
aggregation	dictionaries;	(5)	a	hierarchy	of	domains;	and	(6)	a	hierarchy	of	users.	
The	output of the phase is a set of documents containing the unified data model,
the	query	priorities,	and	the	data	requirements	matrix.	The	steps	of	the	phase	are
analysis of query redundancy, unified query prioritizing, and	construction	of	the	
data requirements matrix.

Data Quality-Based Requirements Elicitation for Decision Support Systems ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

•	 Analysis.of.query.redundancy:.Equivalent requirements are identified, that
is,	requirements	such	that	queries	and	associated	data	quality	are	the	same.	Its	
goal	is	to	reduce	the	number	of	requirements	to	the	data	sources.	We	do	not	
have	this	situation	in	our	case	study.

•	 Unified query prioritizing: During	the	initial	phases	we	worked	with	differ-
ent	domains.	We	now	need	to	unify	all	requirements	from	these	domains,	and	
define priorities between them. DSS-METRIQ proposes the following order of
priorities:	Priorities between domains -> Priorities between users -> Priori-
ties between queries of the same user: Intuitively,	the	idea	is	that	the	require-
ment	with	the	least	priority	in	a	domain	prevails	over	the	requirement	with	
the	highest	priority	in	the	domain	immediately	following	(in	importance)	the	
previous one. The following formula defines the global priority computation
for	a	query	“Q”	denoted	PriorityG(Q).	This	empirical	expression	is	intends	to	
capture the order of priorities defined previously:

	 PriorityG.(Q)	=	PriorityD	(D)	*	X2	+	PriorityU	(U)	*	X	+	PriorityQ	(Q)

	
	 where	PriorityD	(D),	PriorityU	(U),	and	PriorityQ	(Q)	are	the	domain,	users,	

and	query	priorities.	As	a	result	of	this	step	we	obtain	a	set	of	queries	ordered	
by	priority.	The	form	QRY_USR	is	updated	in	order	to	complete	the	Global
priority field. These priorities are a tool for solving conflicting requirements.
For	example,	in	our	case	study,	query Q1	has	priority	5	for	user	U2	(with	pri-
ority	1),	who	belongs	to	domain D1	(with	priority	5).	Thus,	the	global	priority	
for	query	Q1	is	135.

•	 Data.requirements.matrix: This	is	the	integrated	requirements	form.	This	
form	is	used	for	exchanging	information	with	data	producer	users.	The	form	
MAT_REQ_DATA is filled out.

Example 4: Figure	1	shows	a	portion	of	the	form	MAT_REQ_DATA	for	
our	case	study.	Each	triple	domain-user-query	has	associated	with	it	a	set	
of	data	quality	dimensions	and	values	for	these	dimensions.	Note	that	this	
form	summarizes	information	obtained	during	the	previous	phases.	

Phase.IV:.Data.Source.Selection

In this phase, data sources are studied in order to determine if they fulfill the infor-
mation	requirements	collected	in	phases	I	to	III.	The	outputs of	the	phase	are	(1)	a	
query	evaluation	report	and	(2)	a	data	source	selection	order	for	each	data	element.	
This	process	is	central	to	our	methodology.	As	far	as	we	are	aware	of,	this	is	the	

�8 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

first proposal addressing this topic in a quantitative fashion. Now we describe the
steps	of	the	phase.

•	 Analysis.of.data.sources:	Meetings	with	data	producers	are	carried	out	(with	
the	help	of	the	documents	produced	so	far),	where	the	set	of	data	sources	and	the	
quality	of	their	data	are	documented.	Also,	information	on	source	availability	
is	collected.	Two	forms,	MAS_DS_P	and	MAS_DS_L,	are	used	for	physical	

Figure 1. Data requirements matrix

O
rig

in
(d

om
-u

sr
)

ID
 D

at
a

(d
ic

tio
na

ry
)

D
es

cr
ip

tio
n

B
us

in
es

s
P

ro
ce

ss
A

gg
re

ga
tio

n
R

an
ge

(d
es

cr
ip

tio
n)

R
an

ki
ng

(d
es

cr
ip

tio
n)

Ti
m

el
in

es
s

A
cc

ur
ac

y
C

on
si

st
en

cy

de
sc

rip
tio

n
co

m
pl

et
en

es
s

de
sc

rip
tio

n
va

lu
e

S
U

R
V

E
Y

va
lu

e

FO
R

M

Data Quality-Based Requirements Elicitation for Decision Support Systems ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

and	logical	data	sources,	respectively.	Each	form	contains	a	data	source	iden-
tifier, values for data source availability, and a source priority defined by the
data	producer	user.	In	the	case	of	logical	data	sources,	for	each	data	element	
the corresponding expression for obtaining the data must be specified. The
following	actions	are	taken:	(a)	the	data	producer	user	determines	the	prior-
ity	criteria	for	data	source	usage,	based	on	experience	and	technical	issues.	
Priority ranges between 1 and 5. (b) The requirements engineer finds out if
a	physical	source	contains	the	required	data;	if	so,	it	is	registered	in	the	form	
MAS_DS_P. (c) If a combination of fields yields some of the required data,
this	combination	is	considered	a	logical data source, and	it	is	registered	in	
the	form	MAS_DS_L.	In	our	case	study	we	have	three	physical	data	sources,	
which	for	simplicity	we	denote	A,	B,	and	C.	Data	source	A	is	a	proprietary	
system	database,	with	transactional	availability	of	50%	and	priority	5	(contains	
the	core	data	of	the	business	processes).	Data	source	B	is	a	SAP	repository	with	
50%	availability	and	priority	4.	Data	source	C	is	a	stylesheet	collection	(contain-
ing	monthly	sales	information)	with	availability	100%	and	priority	1.

•	 Data.source.quality:.This	step	consists	of	three	tasks	that	can	be	performed	
in	parallel.	The	goal	is	obtaining	the	quality	of	the	data	source	for	each	data-
source	combination.	The	data	provider	informs	quality	characteristics	of	the	
data source and a mapping for the required fields (i.e., where is the required
data	located,	and	under	which	name?).	

•	 Data.source.quality.(data):.The	form	DS_QTY_I	is	completed.	This	form	
contains,	 for	 each	query,	 for	 each	data	 element	 in	 the	query,	 and	 for	 each	
data	source,	the	following	information:	(a)	mapping: field in the data source
containing the data element, or field to which a function must be applied. For
instance,	the	month	of	a	sale	could	be	obtained	as	month(date).	(b)	Aggrega-
tion:	tells	if	the	aggregated	data	is	or	is	not	present	in	the	source,	or	can	be	
computed	from	the	data	in	the	source.	(c)	Accuracy. (d)	Timeliness. The	last	
two	dimensions	apply	to	our	case	study,	but	can	be	replaced	by	a	different	set	
of	dimensions	if	the	problem	at	hand	requires	it.	In	our	case	study,	the	record	
<Q2, sales, B, amount, NO, 70, 5min> tells	that	for	query	Q2,	data	element	
sales can	be	obtained	from	data	source	B (where	it	is	in	nonaggregated	form),	
with	70%	accuracy and	with	a	timeliness of 5	minutes.

•	 Data.source.quality.(consistency):.The	form	DS_QTY_II	is	completed,	with	
the	consistency	characteristics	of	the	data	source.	There	is	one	entry	for	each	
data	source,	containing	an	evaluation	of	the	source’s	consistency.	In	our	case	
study,	consistency	condition	Q2C	above	is	accomplished	with	a	100%	preci-
sion	by	data	source	A,	and	90%	precision	by	data	source	B.	

•	 Data.source.quality.(completeness): The form DS_QTY_III is filled analo-
gously	to	form	DS_QTY_II,	addressing	completeness	instead	of	consistency.	
In	our	case	study,	the	completeness	condition	stating	that	all	customers	regis-

80 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

tered	since	2001	must	be	in	the	database	is	accomplished	with	100%	precision	
by	data	source	A,	and	99%	precision	by	data	source	B.

•	 Data.source.quality.assessment:	The	goal	of	this	step	is	the	integration,	in	
a	single	data	source	assessment	matrix,	of	the	three	essential	components	of	
the	methodology:	(a)	data	requirements;	(b)	quality	requirements;	and	(c)	data	
sources.	The	output	of	the	process	is,	for	each	data	element,	the	best	data	source	
for obtaining it, and a range with the qualification for each data source. The
Global Data Source Performance	is	computed,	using	a	procedure	that	adapts	
the	QFD	methodology.

Example.5:.The	data	source	quality	assessment	matrix	for	our	running	
case	study	is	depicted	in	Figure	2.	We	only	show	the	data	element	“sales”	
and	two	queries:	Q1	(from	user	U2)	and	Q4	(from	user	U3).	The	infor-
mation	gathered	so	far	is:
a.	 Query	Q1	
. Priorities. of. quality. dimensions:. accuracy:. 5,	 consistency:	 4,	

completeness:	3,	timeliness:	5.
 Global priority of the query:	135	(as	explained	in	Phase	III).			
. Aggregations.required:	month	and	salesman.	
b.	 Query	Q4
. Priorities.of.quality.dimensions:	accuracy:	4,	consistency:	5,	com-

pleteness:	1,	timeliness:	3.
 Global priority of the query: 31
. Aggregations.required:.Country,	province,	city,	neighborhood.	
	 Finally,	 the	 data	 producer	 user	 provided	 the	 following	 informa-

tion:
 Available data sources: A,	B,	and	C	(c	in	Figure	2),	with	priorities	

5,4,1	respectively,	as	explained	previously	(b	in	Figure	2).

Each	matrix	block	is	composed	as	follows:	(1)	Consumer	users’	requirements:	data	
(h),	query	ID,	quality	dimensions	(i),	aggregations	(j),	global	priority	of	the	query	
(from	Phase	II),	and	quality	dimension	priorities	given	by	the	users	in	Phase	III;	
(2)	Data	producer	users’	information,	obtained	in	the	previous	step	of	this	phase:	
a submatrix indicating requirements fulfillment for each available data source.
According to the degree of fulfillment, a value is given (1, 3, or 9, d in Figure 2),
using the following criteria: “1” is given if the condition is not fulfilled, “3” if the
condition is not fulfilled, but can be computed from the data in the source; and “9”
if the condition is fulfilled. For the sake of brevity we do not extend on how to de-

Data Quality-Based Requirements Elicitation for Decision Support Systems 8�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

termine	these	values.	(3)	Data	source	performance	for	each	query	(e	in	Figure	2);	
(4)	Global	data	source	performance	(f	in	Figure	2).
The	data	source	performance	for	each	query	is	computed	as:

PerfLocal(S,Q,D).=.∑ (prii	*	reli)	,	

where

Figure 2. Quality assessment matrix

82 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

PerfLocal.(S,Q,D):.Data source performance of source S for data D in query Q

Prii:	Data, quality, and aggregations priorities, for data D in query Q

Reli: Degree of fulfillment of data source S for query Q and data element D

The	global	data	source	performance	is	computed	as:

PerfGlobal(F,Q) = ∑ HierGlobal(Qj) * PerfLocal(S,Q ,D)

For	all	queries	Qj	involving	data	element	D,	and	given	a	set	F.of	a	data	source	and	
a	set	of	queries	Q.	HierGlobal	(Qj):	Global	priority	of	query	Qj.

Example.6:.For	the	table	in	Example	5,	the	local	performance	for	data	
source	A	and	query	Q1	is	computed	as	5	*	1	+	5	*	1	+	5	*	1	+	5	*	1	+	4	*	
1	+	3	*	1	+	5	*	1	+	5	*	1	+	5	*	1	=	42.	The	global	performance	for	source	
A	is:	135	*	42	+	31	*	144	=	10134.

•	 Data.source.selection:	Although	the	final	source	selection	is	beyond	the	scope	
of	the	methodology,	a	document	is	generated,	with	a	ranking	of	data	sources	
for each data. This document will be used in the final data source selection
process.	For	our	case	study,	the	ranking	is	1:	data	source	B	(global	performance	
48,468),	2:	data	source	C	(global	performance	27,702),	and	3:	data	source	A	
(global	performance	10,134).

Phase.V:.Document.Generation

With	the	information	collected	on	Phases	I	to	IV,	a	set	of	requirements	documents	
is	produced.	These	documents	are	reviewed	by	the	referent,	data	producer,	and	data	
consumer users, in order to reach a final agreement for closing the requirements
elicitation	phase.	We	describe	these	documents	next.

•	 Query.requirements.document: Contains	all	the	queries	obtained	in	phases	
I to IV, ordered by global priority. Each query is qualified as follows: a value
of	“1”	means	that	the	query	can	be	answered	with	the	information	contained	
in	the	data	sources;	“2”	means	that	the	query	involves	values	not	in	the	data	
sources,	thus,	it	cannot	be	answered;	“3”	means	that	a	query	“close”	to	the	
original	one	can	be	answered	with	the	data	available	in	the	sources	(e.g.,	modi-

Data Quality-Based Requirements Elicitation for Decision Support Systems 8�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

fying	the	required	granularity	or	the	required	accuracy).	In	the	“Los	Andes”	
project,	queries	Q1	to	Q3	were	rated	“1.”

•	 DSS.requirements.document: Summarizes	all	 the	 requirements	collected	
during the process. Contains, for each query: the query identifier, the name of
the user who specified the requirement, the query expressed in English, the
same	query	after	disambiguation,	the	query	frequency,	the	query’s	global	prior-
ity,	and	the	expected	response	time.	For	each	data	attribute	associated	to	each	
query, the form includes the identifier in the data dictionary, description, name
to	be	displayed	when	showing	the	data,	and	all	the	quality	conditions	required.	
Data warehouse requirements documents: There	are	two	documents:	a	metrics	
document	and	a	quality	document.	The metrics document specifies, for each
quality	dimension,	the	range	of	values	that	are	acceptable	for	each	attribute	
involved	in	a	requirement,	and	the	metrics	to	be	used	in	the	data	warehouse	
design.	The quality document specifies the range of values acceptable for each
requirement. For each required attribute, the document defines (1) maximum
time	for	data	loading;	(2)	minimum	value	for	data	currency	(i.e.,	the	age	of	
the	data);	and	(3)	acceptable	values	for	consistency	and	completeness.	For	
each	dimension,	the	report	includes	the	formula	for	obtaining	maximum	or	
minimum	values.

•	 Preliminary.data.model: With	the	collected	information	building	a	preliminary	
version	of	the	star	schema	model	for	the	data	warehouse	is	straightforward.	

•	 Data. source. requirements. document:. With	 the	 information	 obtained	 in	
Phase	IV	a	document	containing	the	data	sources	is	produced.	This	document	
contains for each data source an identifier, a description, and the data source
availability.

•	 ETL.process.requirements.document:	A	complete	listing	of	 the	required	
data and a mapping from the required data to the data source fields from which
these	data	are	obtained	 is	provided,	possibly	 including	 formulas	 involving	
more than one data field. This information will be used for the design and
implementation	of	the	ETL	process.

Summary.and.Research.Directions

In	this	chapter	we	showed	that	methodologies	for	software	development	in	operational	
systems	do	not	apply	in	the	DSS	setting.	Based	on	this	conclusion,	we	presented	
a	methodology	for	requirements	elicitation	with	focus	on	data	quality	dimensions	
and data source selection. The methodology aims at finding out if the data currently
available	in	the	operational	data	sources	allow	answering	a	set	of	queries	(functional	
requirements)	 satisfying	 certain	 data	 quality	 conditions	 (nonfunctional	 require-
ments).	In	order	to	quantify	the	answer	to	such	question,	we	adapted	the	quality	

84 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

function deployment (QFD) technique. Finally, DSS-METRIQ specifies the set of
forms	needed	to	support	the	requirements	elicitation	process.
Future	research	directions	include	a	Web-based	implementation	of	the	framework,	
currently	in	progress,	and	developing	a	data	source	selection	engine	that	can	deliver	
different combinations of data sources fulfilling the requirements with different
levels	of	quality.	Data	quality	evolution,	and	how	it	affects	data	source	selection,	
allowing	dynamically	changing	the	data	source	being	selected,	must	also	be	ac-
counted	for	in	future	work.	

References

Akao,	Y.	(1997).	QFD, past, present and future.	Presented	at	the Third	International	
QFD	Symposium	(QFD’97),	Linköpin,	Sweden.

Basili,	V.,	Caldiera,	G.,	&	Rombach,	H.	(1992).	The goal question metric approach	
(Computer	 Science	 Technical	 Report	 Series	 CS-TR-2956). College	 Park:	
University	of	Maryland.	

Bobrowski,	M.,	Marré,	M.,	&Yankelevich,	D.	(1999).	An	homogeneous	framework	
to	measure	data	quality.	In	Y.	W.	Lee	&	G.	K.	Tayi	(Eds.),	Proceedings of
IQ’99 (pp.	115-124). Cambridge,	MA:	MIT	Press.	

Bonifati,	A.,	Cattaneo,	F.,	Ceri,	S.,	Fuggetta,	A.,	&	Paraboschi,	S.	(2001).	Designing	
data	marts	for	data	warehouses. ACM Transactions on Software Engineering
and Methodology, 10(4), 452-483.

Chaudhuri,	S.,	&	Dayal,	U.	(1997).	An	overview	of	data	warehousing	and	OLAP	
technology.	SIGMOD Record, 26(1), 65-74.

Christel,	M.	G.,	&	Kang,	K.	C.	(1992).	Issues in requirements elicitation	(Tech.	
Rep.	No.	CMU/SEI-92-TR-12).	Carnegie	Mellon	University.

Cippico,	V.	(1997).	Comparison	of	the	decision	support	systems	and	transaction	
support	 system	development	methodologies.	 In	Advances in database and
information systems (pp.	416-426). St.	Petersburg,	FL:	Nevsky	Dialect.

Delone,	W.	H.,	&	Mclean,	E.	R. (1992). Information	systems	success:	The	quest	for	
the	dependent	variable. Information Systems Research,	3(1),	60-95.	

Gill,	H.,	&	Rao,	P.	(1996). Data warehousing. Indianapolis,	IN:	Prentice	Hall.
Hoxmeier,	 J.	A.	 (2000).	 Database	 quality	 dimensions.	 Journal of Business and

Management, 7(1).
Jarke,	M.,	Lenzerini,	M.,	Vassiliou,	Y.,	&	Vassiliadis,	P.	(2003).	Fundamentals of

data warehouse. Berlin,	Germany:	Springer-Verlag.

Data Quality-Based Requirements Elicitation for Decision Support Systems 8�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Jarke,	M.,	&	Vassiliou,	Y.	(1997).	Data	warehouse	quality:	A	review	of	the	DWQ	
project.	In	D.	Strong	&	B.	Kahn	(Eds.), Proceedings of the 1997 Conference
on Information Quality (pp.	299-313).	Cambridge,	MA: MIT	Press.

Kimball,	R.,	Reeves,	L.,	Ross,	M.,	&	Thornthwaite,	W.	(1998). The data warehouse
lifecycle toolkit.	New	York:	John	Wiley	&	Sons.

Lee,	Y.	W.,	Strong,	D.,	Kahn,	B.,	&	Wang,	R.	(2002).	AIMQ:	A	methodology	for	in-
formation	quality	assessment.	Information & Management, 40(2),	133-146.

Moody,	D.,	&	Kortink,	M.	(2000,	June	5-6).	From	enterprise	models	to	dimensional	
models:A	methodology	for	data	warehouse	and	data	mart	design.	In Proceed-
ings of the International Workshop on Design and Management of Data Ware-
houses (DMDW2000) (pp.	5:1-5:12).	Stockholm,	Sweden.

Mullery,	G.	P.	 (1979,	September).	CORE:	A	method	 for	controlled	 requirement	
specification. In Proceedings of the 4th international conference on Software
engineering,	Munich,	Germany (pp.	126-135).

Paim,	F.,	&	Castro,	 J.	 (2002).	Enhancing	data	warehouse	design	with	 the	NFR	
framework.	In	Proceedings of the 5th Workshop on Requirements Engineering
(WER2002)	(pp.	40-57).

Paim,	F.,	&	Castro,	J.	(2003,	September	8-12).	DWARF:	An	approach	for	require-
ments definition and management of data warehouse systems. In Proceedings
of the 11th IEEE International Conference on Requirements Engineering	(pp.	
75-84).

Pipino,	L.,	Lee,	Y.	W.,	&	Wang,	R.	(2002).	Data	quality	assessment.	Communica-
tions of the ACM, 45(4),	211-218.

Prakash,	N.,	&	Gosain,	A.	(2003,	June	16-20).	Requirements	driven	data	warehouse	
development.	In	Proceedings of the 15th Conference on Advanced Information
Systems Engineering, Klagenfurt	/	Velden,	Austria.

Quix,	C.,	Jarke,	M.,	Jeusfeld,	M.,	Vassiliadis,	P.,	Lenzerini,	M.,	Calvanese,	D.,	&	
Bouzeghoub,	 M.	 (2002).	 Data warehouse architecture and quality model
(Tech.	Rep.	No.	DWQ-RWTH-002).	LuFg	Theoretical	Computer	Science,	
RWTH	Aachen.

Ross, D., & Schoman, K. (1979). Structured analysis for requirements definition.
IEEE Transactions on Software Engineering, 3(1), 6-15.

Strong,	D.,	Yang,	W.,	&	Wang,	R.	(1997).	Data	quality	in	context. Communications
of the ACM, 40(5),	103-110.

Thayer,	R.	(2002).	Software	requirements	engineering:	A	tutorial. IEEE Computer,
35(4),	68-73.	

Vassiliadis,	P.,	Bouzeghoub,	M.,	&	Quix,	C.	(1999).	Towards	quality-oriented	data	
warehouse	usage	and	evolution.	In	Proceedings of the International Confer-
ence on Advanced Information Systems Engineering	(pp.	164-179).

86 Vaisman

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Wand,	Y.,	&	Wang,	R.	Y.	(1996).	Anchoring	data	quality	dimensions	in	ontological	
foundations.	Communications of the ACM, 39(11),	86-95.

Wang,	R.	Y.,	&	Reddy,	M.	P.	 (1992).	Quality data objects.	 (Total	Data	Quality	
Management	Research	Program,	TDQM-92-06).	MIT	Sloan	School	of	Man-
agement.

Wang,	R.,	Storey,	Y.,	&	Firth,	C.	(1995).	A	framework	for	analysis	of	data	qual-
ity	research.	IEEE Transactions on Data and Knowledge Engineering, 7(4),
623-640.

Wang,	R.	Y.,	&	Strong,	D.	M.	(1996).	Beyond	accuracy:	What	data	quality	means	to	
data	consumers. Journal of Management Information Systems,	12(4),	5-34.

Winter,	R.,	&	Strauch,	B.	 (2003).	A	method	 for	demand-driven	 information	 re-
quirements	analysis	in	data	warehousing	projects.	In	HICSS-36, Hawaii (pp.	
231-231).	IEEE	Press.

Winter,	R.,	&	Strauch,	B.	(2004).	Information	requirements	engineering	for	data	
warehouse	systems.	In	H.	Haddad,	A.	Omicini,	R.	L.	Wainwright,	&	L.	M.	
Liebrock	(Eds.), Proceedings of SAC’04,	Nicosia,	Cyprus	(pp.	1359-1365).	
ACM	Press.

Zmud,	R.	(1978).	Concepts,	theories	and	techniques:	An	empirical	investigation	
of	the	dimensionality	of	the	concept	of	information.	Decision Sciences, 9(2),	
187-195.

Data Quality-Based Requirements Elicitation for Decision Support Systems 8�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Section II

Loading	and	Refreshing

88 Adzic, Fiore, & Sisto

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Chapter.IV

Extraction,.
Transformation,.

and.Loading.Processes
Jovanka Adzic

Telecom Italia, Italy

Valter Fiore
Telecom Italia, Italy

Luisella Sisto
Telecom Italia, Italy

Abstract

ETL stands for extraction, transformation, and loading, in other words, for the data
warehouse (DW) backstage. The main focus of our exposition here is the practical
application of the ETL process in real world cases with extra problems and strong
requirements, particularly performance issues related to population of large data
warehouses. In a context of ETL/DW with strong requirements, we can individu-
ate the most common constraints and criticalities that one can meet in developing
an ETL system. We will describe some techniques related to the physical database
design, pipelining, and parallelism which are crucial for the whole ETL process.
We will propose our practical approach, “infrastructure based ETL”; it is not a
tool but a set of functionalities or services that experience has proved to be useful
and widespread enough in the ETL scenario, and one can build the application on
top of it.

Extraction, Transformation, and Loading Processes 8�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Introduction

ETL	stands	for	extraction,	transformation,	and	loading,	in	other	words,	for	the	data	
warehouse	backstage.	A	variety	of	commercial	ETL	tools	exist	in	the	market	(IBM,	
2005;	Informatica,	2005;	Microsoft,	2005;	Oracle,	2005),	with	a	recent	market	re-
view	of	Gartner	Research	(Gartner,	2005).	A	lot	of	research	efforts	exist	(Golfarelli	
&	Rizzi,	1998;	Husemann,	Lechtenborger,	&	Vossen,	2000;	Tryfona,	Busborg,	&	
Christiansen,	1999;	Vassiliadis,	Simitsis,	&	Skiadopoulos,	2002,	May;	Vassiliadis,	
Simitsis,	&	Skiadopoulos,	2002,	November)	mostly	targeting	modeling	(concep-
tual, logical) and methodology issues (like logical modeling of ETL workflows).
Some	works	are	focused	on	the	end-to-end	methodology	for	 the	warehouse	and	
ETL	projects	(Kimball	&	Caserta,	2004;	Kimball,	Reeves,	Ross,	&	Thornthwaite,	
1998;	Vassiliadis,	Simitsis,	Georgantas,	&	Terrovitis,	2003)	targeting	the	complete	
life	cycle	of	 the	DW	project,	describing	how	to	plan,	design,	build,	and	run	the	
DW	and	its	ETL	backstage.	The	main	focus	of	our	exposition	here	is	the	practical	
application	of	the	ETL	process	in	real	world	cases	with	extra	problems	and	strong	
requirements,	particularly	performance	issues	related	to	population	of	large	data	
warehouses	(one	case	study	is	described	in	Adzic	&	Fiore,	2003).
In this chapter, we will first discuss the ETL scenario, requirements, criticalities,
and	so	forth	that	constitute	the	general	framework	for	ETL	processes.	Then	we	will	
describe	some	techniques	related	to	the	physical	database	design,	pipelining,	and	
parallelism	which	are	relevant	for	performance	issues.	Finally,	we	will	describe	our	
practical	approach,	“infrastructure	based	ETL”;	it	is	not	a	tool	but	a	set	of	function-
alities	or	services	that	experience	has	proved	to	be	useful	and	widespread	enough	
in	the	ETL	scenario,	and	one	can	build	the	application	on	top	of	it.	

ETL.Scenario

The	primary	scenario	in	which	ETL	takes	place	is	a	wide	area	between	the	sources	
of	data	and	a	target	database	management	system	(DBMS);	in	the	middle,	there	are	
all	the	required	functionalities	to	bring	and	maintain	historical	data	in	a	form	well	
suited	for	analysis	(Figure	1).
All	the	work	to	collect,	transform,	and	load	data	from	different	and	multiple	sources	
to	a	target	DBMS	structured	for	analysis	is	what	we	call	ETL.
A	DW	project	consists	of	three	main	technical	tasks:	ETL,	database	design,	and	
analysis	techniques	and	tools;	each	of	them	has	particular	issues	and	requirements.	
Above	all,	we	must	consider	the	problems	in	accessing	data	owned	by	other	de-
partments,	groups,	and	so	on;	obtaining	the	necessary	grants	to	access	data	is	not	
always	easy	for	both	technical	and	nontechnical	reasons.	These	political	problems	

�0 Adzic, Fiore, & Sisto

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

can	impose	constraints	and	work-around	that	make	the	ETL	process	more	complex.	
Another	topic	is	the	absence	of	internal	enterprise	standardization.	It	can	be	very	
difficult to find the same rules (even in the same department) in naming files, in
expressing a date, in choosing a structure for files, and so forth. These problems,
involve	very	general	questions	 like	standardization,	metadata,	and	so	 forth,	and	
cover	a	relevant	part	in	the	ETL	process	design.	

Requirements,.Constraints,.and.Criticalities

In	a	DW	project	(as	in	every	project),	the	most	important	step	is	the	requirements	
collection. A well-defined set of requirements is essential in order to individuate
the	best	approach	to	ETL.	If	the	DW	must	be	loaded	once	a	week,	with	limited	
transformation	complexity	and	volumes,	 then	one	can	choose	any	preferred	ap-
proach	and	hence	skip	this	chapter	entirely.	In	this	case,	ETL	means	loading	data	
into	DBMS	with	simple	transformation;	a	normal	knowledge	of	SQL	and	expertise	
in	programming/scripting	is	enough	to	achieve	the	objective	in	many	cases.	On	the	
contrary,	if	DW	loading	frequency,	volumes,	and	complexity	are	high,	then	a	more	
structured	approach	becomes	necessary.	
In these cases it is necessary to find out sophisticated ETL techniques, whereas in
other	cases	the	more	usual	approach	is	the	best	solution.	It	is	true,	however,	that	
if	a	company	has	bought	licenses	for	a	commercial	tool	or	has	developed	its	own	
infrastructure	(as	we	propose	here),	then	it	is	strongly	recommended	to	use	them	
in	all	kinds	of	DW	projects.
In	a	context	of	strong	requirements,	we	can	individuate	the	most	common	constraints	
and	criticalities	that	one	can	meet	in	developing	an	ETL	system:

flat	file

source	dbms
transformations

data	validations

data	integration
aggregation

loading
target	dbms

ETL

dbms/system/application
Operation&Maintenance

other	sources

other	calculations

cleaning

Extraction/acquisitionflat	file

source	dbms
transformations

data	validations

data	integration
aggregation

loading
target	dbms

ETL

dbms/system/application
Operation&Maintenance

other	sources

other	calculations

cleaning

Extraction/acquisition

Figure 1. ETL scenario

Extraction, Transformation, and Loading Processes ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

•	 Volumes:	High	volumes	imply	specialized	loading	techniques	(classic	SQL	
is not suited) and require a good efficiency of transformation code.

•	 Near real time (NRT):	In	these	contexts,	loading	and	analysis	processes	must	
coexist	together,	and	that	implies	strong	constraints	on	loading	techniques;	
massive	loading	mechanisms	are	not	directly	applicable,	indexes	must	be	ac-
tive,	and	so	on.

•	 Strict.time.constraints:.Especially	true	in	NRT	where	the	population	cycle	
can	have	a	period	of	10	or	less	minutes,	but	also	in	traditional	batch	systems	
in	particular	circumstances.

•	 Reliability/availability:	Reliability	is	important,	because	in	some	contexts	not	
even	one	data	item	is	allowed	to	be	lost,	which	means	that	any	missing	data	
must	be	recovered.	The	other	face	of	reliability	is	availability,	in	our	context,	
the	ability	to	recover	from	external/internal	error	(data	loss	or	corrupted,	etc.)	
to	maintain	data	integrity	and	consistency.

•	 Loading.atomicity:.The	system	must	be	able	to	manage	partial	load	in	atomic	
fashion	(manage	a	sort	of	global commit)	in	order	to	allow	partial	recovery.

•	 Source instability:	In	some	contexts	the	sources	of	data	are	not	stable	(e.g.,	
due	to	network	problems	or	systems	unavailability)	and	acquisition	process	
must	be	able	to	retry.

•	 Nonstandard/complex transformation: DW	 techniques	 are	 not	 only	 ap-
plied	in	“sales	and	revenue”	contexts;	in	many	cases	one	needs	to	implement	
complex	transformations	or	specialized	calculations	that	differ	from	standard	
analytical	functions.

We	have	not	yet	mentioned	 issues	 like	metadata	 and	cleaning	which	are	vastly	
debated.	Metadata	are	data	that	describe	other	data:	for	example,	a	column	named	
“price”	obviously	refers	to	the	price	of	an	article	but	many	other	pieces	of	informa-
tion	may	also	be	useful	for	understanding	its	exact	meaning.	Does	the	price	include	
VAT	or	not?	Is	that	price	for	wholesale	or	retail	dealers?	Which	department	has	
established it? When was it modified last? These, and many other questions, may
stay	behind	data,	simple	and	clear	only	in	appearance.	
In	our	mind,	data	always	exist	together	with	their	metadata:	when	we	look	at	prices	
of	goods	at	the	grocery	store,	we	know	the	answers	to	all	the	questions,	because	
we	are	aware	of	the	context	(goods	in	a	little	retail	store).	But	when	we	look	at	the	
column	“price”	in	a	table	and	nothing	else,	the	context	is	unknown,	and	data	may	
have	several	different	meanings.	In	the	case	of	“enterprise	data	warehouse”	there	
could	be	a	lot	of	information/metadata	to	manage,	so	the	need	for	metadata	manage-
ment	is	clearly	visible.	One	must	know	the	exact	meaning	of	any	single	data	item	
contained	in	DW,	otherwise	one	cannot	do	any	reliable	analysis	(that	is	the	goal	of	
a	DW).	In	other	contexts,	where	the	domain	is	limited	and	well	known,	the	need	

�2 Adzic, Fiore, & Sisto

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

of	metadata	is	less	relevant	because	the	operators	are	familiar	with	their	own	data	
(e.g.,	in	a	system	that	collects	Telco	measures,	it	is	useless	to	specify	what	column	
“erlang”	means).	In	these	cases,	the	data	are	stored	in	the	DBMS	and	metadata	could	
continue	to	stay	in	the	mind	of	the	persons.	
However,	when	the	metadata	management	is	necessary,	there	are	still	lots	of	ques-
tions:	how	to	design,	store,	and	display	metadata.	Some	high-end	ETL	tools	have	a	
support	for	storing	metadata	more	or	less	comprehensively,	although	rarely	inter-
changeable	with	others	(limits	in	metadata	federations).	
We	have	not	got	a	great	expectation	in	these	techniques,	we	believe	that	a	good,	
well-structured	traditional	documentation	may	constitute	a	valid	metadata	support;	
the human language has the flexibility, the undertones, and the richness to depict and
contextualize	any	kind	of	information.	The	main	problem	is	that	paper	documen-
tation	is	not	linked	with	the	data	scheme,	and	also	stored	metadata	need	a	human	
intervention to reflect changes. This is a problem concerning the organization of the
“productive	process”	more	than	an	IT	problem.	Accordingly,	it	could	be	extremely	
useful	to	have	something	like	a	structured	language	for	metadata	representation.
Another aspect of interest in ETL is cleaning, that is, the ability to check, filter, and
correct	mistakes	or	corruption	that	can	be	found	in	the	source	data.	A	typical	case	
in	which	a	cleaning	process	is	mandatory	is	in	the	address	(location)	processing:	
“street,”	“st,”	“st.,”	and	so	forth;	all	indicate	the	word	“street”	and	an	automatic	
process	must	be	able	to	recognize	it.	For	this	particular	purpose,	there	are	special-
ized	tools	that	apply	ad-hoc	algorithms	and	have	their	own	topographic	database	
where	to	store/retrieve	the	correct	name	of	every	street,	and	so	forth.	In	this	case,	
cleaning is a specific stage in the ETL process.
Nevertheless,	the	problem	of	assuring	data	correctness	may	be	considered	from	
different	perspectives.	Data	 sources	do	not	have	 the	 same	 risks	of	errors:	one	
is a well defined and certified file produced by another system, another is data
inserted	directly	by	users,	or	data	sent	via	an	unstable	line	or	coming	from	unre-
liable	systems,	and	so	forth.	The	risk	of	data	corruption	in	these	examples	is	dif-
ferent in quantity and quality; in the case of a certified file, one can process them
without	any	check;	Web	form	data	must	be	checked	and	interpreted	according	
to	 the	application	logic,	while	 in	 the	last	case,	we	must	pay	attention	to	hard-
ware	corruption,	loss/inconsistency/duplication	of	some	information	and	so	on.	
It is impossible to find a general rule for “cleaning” due to the wide spectrum of
possible types of errors. Apart from specific cases where a dedicated processing
phase is mandatory, is it better to process the files twice (a first scan for cleaning
and	a	second	for	transforming)	or	to	incorporate	the	optimal	level	of	checks	in	
the	transformation	phase?	In	our	experience,	with	large	volumes	and	strict	time	
constraints,	the	second	solution	is	better	because	it	saves	computational	and	I/O	
time,	however,	loosing	in	the	implementation	conceptual	separation	between	the	
cleaning	and	transform	processes.	

Extraction, Transformation, and Loading Processes ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Physical Database Design

Many	important	works	related	to	the	database	modeling	and	design	for	DW	are	avail-
able	in	Kimball	et	al.	(1998);	in	this	chapter,	we	focus	on	physical	database	design	
and	correlated	techniques	because	this	aspect	is	crucial	for	the	whole	ETL	process;	
a	powerful	transformation	engine	working	on	a	not-well	structured	database	may	
be	a	cause	of	problems	for	the	entire	ETL	process.	In	this	chapter,	we	will	describe	
some	important	issues	in	physical	database	design,	in	particular,	the	relevance	of	
partitioning	(range,	hash,	composite)	for	managing	history	and	for	performance	is-
sues	that	must	be	taken	into	account	in	building	a	DW/ETL	project.
Partitioning	is	a	very	important	issue	in	a	database	design,	in	OLTP	and	DW	for	
scalability	reasons	and,	in	the	case	of	DW,	for	managing	history.	Partitioning	is	the	
ability	to	divide/organize	data	in	separate	subsets,	for	example,	the	ability	to	split	
a	table	into	several	ones	still	viewing	it	as	a	whole.	When	we	have	more	than	one	
database	in	different	locations,	we	have	done	some	kind	of	partitioning,	when	we	use	
different	tables	to	contain	the	same	types	of	data.	In	all	these	cases,	there	is	partition-
ing,	and	it	does	not	matter	if	we	use	or	do	not	use	the	partitioning	constructions.	
Modern	DBMS	support	some	kind	of	partitioning	with	unique	techniques	and	con-
structions. The first way to achieve partitions in the Oracle DBMS was with the use
of views; a partitioned table was defined as a view of many tables with the same
layout	connected	together	 in	“union	all.”	Partitioning	pruning,	 the	ability	of	 the	
query	optimizer	to	involve	only	the	few	necessary	partitions	in	a	query	instead	of	
the	all	partitions,	was	achieved	via	an	initialization	parameter.	Starting	with	Oracle8	
and further releases, partitioning constructions were introduced in SQL as specific
“partitioning	clauses.”	Each	partition	can	have	its	storage	attributes	like	distinct	
tables, and there is information stored in the dictionary that permits a unified view
of	them.	Nowadays,	in	the	Oracle	DBMS	there	are	three	types	of	partitions:	range,	
hash,	and	list,	with	the	possibility	of	subpartitioning	by	hash	or	list.
Partitioning	is	a	fundamental	issue	in	the	DW	and	ETL	design	because	this	technique	
permits	an	easy	management	of	history,	loading,	and	query	performance.	Each	row	
in	a	DW	fact	table	has	columns	named	“date-of-fact”	or	“loading-date”;	when	one	
wants	to	maintain	data	for	a	certain	period	of	time	(one	month,	one	year,	etc.),	one	
must	label	the	rows	with	a	date	(date-of-fact)	and	then,	via	management	operation	
on	tables	at	every	loading	cycle,	delete	old	rows,	making	space	for	the	new	records.	
The	“SQL	delete”	operation,	when	involving	many	thousands	or	millions	of	rows,	is	
very	expensive	in	terms	of	time	and	disk	space	(rows	must	be	saved	in	before-image	
space	and	destroyed	only	after	commit)	but	also	involve	heavy	indexes	reorgani-
zation.	Suppose	that	a	fact	table	has	1	billion	rows	and	a	10-day	history;	deleting	
the	rows	related	to	1	day	(100	million)	is	just	heavy,	but	this	is	nothing	compared	
to the job of rearranging five to six indexes that own 1 billion rows. Without parti-
tions	(or	without	some	surrogate	techniques),	it	is	practically	impossible	to	manage	

�4 Adzic, Fiore, & Sisto

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

large	and	very	large	fact	tables,	especially	due	to	the	index	reorganization	costs.	
Enlarging	history	involves	increasing	the	size	of	global	indexes	and	so	increasing,	
in	a	nonlinear	way,	the	cost	of	its	access/reorganization.	The	local	indexes	resolve	
this	problem	maintaining	constant	index	reorganization	costs	at	the	level	of	a	single	
partition	cost	(accessing	the	entire	table	via	a	local	index	has	indeed	a	linear	cost).	
In	this	way,	it	is	possible	to	enlarge	the	history	at	the	cost	of	increased	disk	storage	
requirement.	In	the	following	section,	we	will	see	the	different	types	of	partitioning	
and	how	they	are	suited	for	history	management	and	for	performance.
The	main	type	of	partitioning	used	in	DW	design	is	range	partition;	a	table	is	usu-
ally	partitioned	on	a	date	column	(partition	key)	and	each	partition	contains	rows	
that	fall	in	a	range	expressed	by	a	start_date	and	end_date.	As	mentioned	previ-
ously,	 one	 can	 partition	 by	 “date-of-fact”	 or	 by	 “loading-date”:	 partitioning	 by	
date-of-fact	is	well	suited	for	analysis,	in	that	the	optimizer	can	make	an	effective	
partition	pruning	when	the	queries	(as	usual)	have	a	“where	clause”	on	the	date-
of-fact;	partition	by	“loading-date”	is	best	suited	for	the	ETL	application,	but	can	
limit the benefit of partition pruning. In any case, a table partitioned by date is
optimal	for	history	management.	At	every	loading	cycle,	(when	necessary)	a	new	
partition	is	added	and	the	oldest	one	is	dropped	with	a	SQL	operation	that	is	very	
fast	and	guarantees	transaction	consistency	(the	drop	operation	waits	for	in-course	
selection	on	partition).
The hash partitioning means that data are split over a specified number of partitions
on	the	base	of	the	value	of	a	column	and	is	useful	for	performance	reasons	(striped	
data across multiple files/disks/devices allow parallelization and then improve per-
formance).	Composite	partition	range-hash	means	that	the	single	partitions	will	be	
further	split	on	hash	base	(not	controlled	by	application)	or	on	list	base	(controlled	
by	application)	in	range-list	partitioning.	When	the	volumes	are	high,	splitting	a	
single	partition	by	hash	or	list	is	very	useful	also	with	respect	to	better	disks	utili-
zation	(Figure	2).
Here,	we	have	a	range	(logical)	partition	that	is	striped	over	n	table	spaces,	each	of	
them	containing	one	subpartition	of	every	range	partition;	this	organization	(when	
table	spaces	are	allocated	on	different	volumes)	gives	good	performance	and	easy	
manageability.	Performance	improves	due	to	subpartitions	(better	I/O	paralleliza-
tion).	Manageability	is	simpler	because	we	have	a	1:n	relation	between	table	space	
and	partitions,	so	space	allocation	constraints	are	relaxed.1

As	Figure	2	shows,	indexes	are	partitioned	in	the	same	way	as	the	table.	Partitioned	
or	local	indexes	(an	index	that	is	in	relation	1:1	with	its	partition)	are	the	normality	
in	DW	because	they	can	be	dropped/added	as	table	partition,	thus	avoiding	index	
rebuilding. Different kinds of indexes (B*Tree and bitmap) can be defined as lo-
cal,	but	not	all	types	are	well	suited	for	DW;	in	particular,	bitmap	indexes	are	only	
useful	with	low	cardinality	and	read-only	access.	

Extraction, Transformation, and Loading Processes ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Figure 2. Subpartitioning schema

When	we	have	to	build	indexes,	should	it	be	done	after	load	or	during	load?	In	the	
case	of	high	volumes,	it	is	always	preferable	to	build	indexes	after	load	(better	per-
formance);	for	small/medium	volumes,	loading	with	active	indexes	is	the	simplest	
way. Depending on the DBMS used, one can find some problems to build indexes
leaving	the	table	always	accessible	(this	is	a	problem	only	in	NRT),	so	one	must	
use	some	work-around,	but	when	the	volumes	are	high,	loading	data	with	active	
indexes	is	impossible	(direct	path,	or	similar,	and	bitmap	indexes	cannot	be	used).	
A	simple	work-around	to	load	a	large	volume	of	data	is	to	use	a	temporary	table.	
One	must	add	a	new	partition	on	the	fact	table	and	create	a	temporary	table,	with-
out	indexes,	with	the	same	layout	of	the	target	table	and	laying	on	the	same	table	
space.	Then	one	can	load	it	in	the	direct	path,	create	the	indexes	on	this	temporarily,	
and then exchange it, without validation, with the empty partition, and finally drop
the	empty	table.	At	the	end,	one	has	a	new	partition	full	with	its	valid	indexes.	The	
exchange	operation	mentioned	can	be	done	with	or	without	validation,	in	the	sense	
that DBMS verifies or not if the data in the table to swap are correct according to
the	partition	bound.	
In	DW,	where	the	load	of	data	is	managed	by	an	application,	further	validations	are	
not	necessary;	this	is	true	for	particular	operations	like	“exchange	partition,”	but	also	
for	primary	key,	foreign	key,	check,	and	so	forth.	These	checks	and	constraints	that	
guarantee the “data integrity and consistency,” must exist and must be verified, but
inside	the	application,	before	the	load	operations	occur,	and	not	at	the	DBMS	level.	
The	choice	between	validating	the	integrity	check	in	application	or	in	DBMS	does	
not	exist	in	practice	because,	usually,	the	fast	procedures	for	loading	massive	data	
do	not	support	a	check	of	any	type.	Then,	fact	tables	must	be	free	of	primary	key	and	
other	heavy	constraints;	in	some	cases,	it	is	only	useful	to	declare	referential	integrity	
check	merely	on	behalf	of	optimizer	(with	no	validate	or	similar	clauses).	

Tbs_01 Tbs_02 Tbs_03 Tbs_n

Ix_Tbs_01 Ix_Tbs_02 Ix_Tbs_03 Ix_Tbs_n

Range.Part_02

Ix range Part_02

Hash	sub	part	01_n

�6 Adzic, Fiore, & Sisto

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

In	the	NRT	context	when	the	loading	frequency	is	high	and	history	is	deep,	creat-
ing	a	new	partition	every	cycle	implies	a	total	number	of	partitions	which	DBMS,	
in general, does not support. If volumes are not so high, then it is possible to define
partitions	that	span	many	loading	cycles	(e.g.,	a	partition	per	day),	but	in	these	cases	
fast	loading	techniques	cannot	be	used.	
If	volumes	are	high,	and	hence	the	use	of	fast	loading	is	mandatory,	then	some	ad-
hoc	techniques	must	be	“invented”	(Figure	3).
Our	fact	table	consists	of	two	partitioned	tables	named	“thin”	and	“fat”	merged	by	
a	view	in	“union	all.”	The	thin	table	is	partitioned	in	a	coherent	way	with	loading	
cycle,	while	the	fat	one	has	a	lower	granularity	partitioning.	The	thin	table	is	mas-
sively	 loaded	with	 the	mentioned	method	of	 the	 temporary	 table	exchange	and,	
periodically,	the	thin	partitions	will	be	compacted	together	in	a	new	partition	of	the	
fat	table.	With	this	method,	complex	only	in	appearance,	we	can	contain	the	number	
of partitions to a reasonable value, loading data with the most efficient techniques,
and	defer	the	time-consuming	compact	operations	to	the	optimal	time	window.	All	
these	operations	can	be	done	while	querying	the	data;	the	view	ensures	the	trans-
actional	consistency.

Pipelining.and.Parallelism.................
for.Performance.

Performance	is	one	of	the	most	important	issues	in	ETL	processing.	Due	to	a	high	
volume	of	data,	NRT	time	constraints,	or	hardware	limits	(not	even	the	budget	for	

Figure 3. Thin-fat partitioning schema

FAT

THIN

 p� < �0 apr

p2 <�� may

p2 <� jun
p� <� jun

TABLE (v�ew)

p� < �0 jun

p�� < � jul

TEMP

Extraction, Transformation, and Loading Processes ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

a DW project is large enough), it is always necessary to pay attention to the effi-
ciency	of	code.	
Loading	records	into	a	DBMS	with	some	transformations	is	not	a	complex	job;	
complexity	results	from	a	very	great	number	of	times	that	these	simple	operations	
must	be	repeated.	Dividing	a	job	into	many	sequential	stages	(each	with	its	input	
and output on disk) is a good technique that simplifies the coding and debugging,
but	reading	and	writing	the	same	data	many	times	is	very	expensive.	Processing	
many files (or extracting) sequentially is the simplest way but does not permit a
good	utilization	of	computational	resources.	
To	achieve	high	performance,	there	are	only	two	ways:	

•	 execute	the	minimum	number	of	machine	instructions	and	avoid	useless	I/O
•	 do	not	waste	the	wait	time	that	occurs	in	I/O	operations

These	elementary	rules	imply	a	not	always	simple	balance	between	the	readability	and	
maintainability, on one hand, and an efficient but complex coding, on the other.
To	avoid	reading	and	writing	the	same	data	many	times,	split	workload	in	conformity	
to	the	application	logic	to	exploit	parallel	features	of	the	machines.	Use	pipelining	
and	parallelism	as	the	main	objective	in	ETL.
Parallelism	is	the	ability	to	split	workload	in	many	tasks	that	work	concurrently	and	
synchronize	each	other.	Split	workload	is	obviously	useful	when	we	have	more	than	
one	processor,	but	is	even	useful	in	a	single	processor	machine;	in	the	latter	case,	
we	can	utilize	the	I/O	idle	time	(orders	of	magnitude	of	CPU	time)	to	do	other	use-
ful	jobs.	In	ETL,	parallelism	primarily	means	the	full	utilization	of	multiprocessor	
machines	and	minimization	of	waste	of	time	correlated	to	I/O	operations.	
Pipelining,	 in	 the	processors	 technology,	 is	 the	ability	 to	execute	an	 instruction	
while	fetching	the	next;	in	this	context,	we	mean	passing	an	output	stream	to	the	
next	stage	without	intermediate	steps	(involving	useless	write	and	read	operations)	
and	without	waiting	for	the	completion	of	any	stage.	This	is	another	complementary	
way	to	save	time	and	better	utilize	processing	power.

Infrastructure-Based.ETL

There	are	two	main	approaches	to	ETL:	to	resolve	it	implementing	a	set	of	scripts	
and ad-hoc programs or to buy a commercial ETL tool that simplifies the job of
proposing a methodology, a graphical interface, and a language to solve specific
problems.	In	the	market,	many	of	these	tools	exist,	with	different	levels	in	terms	of	

�8 Adzic, Fiore, & Sisto

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

performance	(some	of	them	are	interpreted	engines,	some	compiled	and	parallel),	
completeness,	usability,	and,	of	course,	different	costs.	
In	our	experience,	we	have	analyzed	these	products	and	some	of	them	almost	seemed	
to be quite adequate for our needs. Quite but not completely, some specific aspects
were	not	covered,	tool	methodology	imposed	some	workaround,	or	the	tool	was	too	
complex/expensive	for	application,	and	so	forth.	The	problem	is	that	ETL	scenarios	
are so heterogeneous, so case-by-case specific, without any general rule, that it is not
possible to comprise them into one well-defined scheme. It is impossible	to	recognize	
a	language	for	ETL	and	build	software	as	a	consequence	(e.g.,	for	SQL);	it	is	always	
(or	almost)	necessary	to	write	from	scratch	the	code	that	performs	that	extraction	
and	that transformation. Only in the loading phase (for a specific target DBMS),
it	is	possible	to	establish	some	rules.	On	the	other	hand,	ad-hoc	scripts/programs	
have poor flexibility, reusability, and maintainability. An infrastructure suited for
the specific business/application context seems to us the best solution.
The	infrastructure	is	not	a	tool;	it	is	a	set	of	functionalities	or	services	that	experience	
has	proved	to	be	useful	and	widespread	enough	in	the	ETL	scenario,	and	one	can	
build	the	application	on	top	of	them	thus	saving	coding	and	debugging	time.	The	
infrastructure	layer	implements,	for	example,	an	API	to	access	DBMS	and	manage	
partitions, functions for lookup operations, file acquisition, parallel read/write, and
so	on	as	shown	in	Figure	4.	Then,	on	top	of	this	infrastructural	layer,	one	can	write	
simpler and more readable code that implements the application specific logic,
resolving	each	possible	trick	not	covered	by	the	lower	layer.	The	infrastructure	is,	
in	fact,	a	library,	so	one	can	pick	only	what	is	needed;	some	constraints	on	how	to	
organize	the	application	may	exist	or	not,	but	in	general	these	are	not	so	strict	as	a	
well-structured	tool	imposes.	This	weak model	gives	one	major	chances	to	achieve	
a good solution suited for the specific case.
With	these	concepts	in	mind,	we	developed	an	infrastructure	written	in	C	for	the	
best	performance,	using	OCI2 to access Oracle for flexibility and OS API Posix3	for	

Figure 4. ETL infrastructure modules

operat�ng system

DBMS

OS access layer DBMS access layer

l�sten�ng
funct�ons

�n-memory
lookup
funct�ons

transform&load
funct�ons

modular�zat�on/ worflow management

aggregat�on
funct�ons

operat�on & ma�ntenance support

other

appl�cat�on code

 �nfrastructure modules

 OS layer

 DBMS

 appl�cat�on code

Extraction, Transformation, and Loading Processes ��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

portability.	We	also	decided	to	give	a	modular	structure	and	utilize,	where	possible,	
a	declarative	approach.	From	the	design	point	of	view,	whatever	infrastructure	or	
tool	used	is	generally	better	than	a	fully	programmatic	approach,	in	that	it	constrains	
to	provided	guidelines	or	formalisms.	

Modularization and Workflow Management

A	typical	ETL	application	may	be	decomposed	in	many	correlated	jobs;	some	of	
them	need	to	be	executed	sequentially	and	others	may	be	parallelized.	In	certain	
cases,	a	job	can	start	only	on	a	certain	condition,	and	so	forth.	The	ability	to	pack-
age	jobs	and	synchronize	them	is	fundamental	for	an	ETL	infrastructure	for	both	
performance	and	recovery	reasons.	
We have chosen to define the “processUnit” as an elementary piece of code that
can be implemented both as thread or process in the specified number of in-
stances,	without	formal	parameters,	but	with	an	exit	code.	The	processUnit	is	the	
basic	element	of	synchronization	graph;	each	processUnit	has	a	dependence	list	
based	on	its	exit	code.	These	processUnits	and	dependences	are	all	declared	(via	
a simple API) in a main module called “master” and these definitions are then
stored	(at	startup)	in	a	memory	segment	shared	across	all	jobs	(processes/threads)	
that	constitute	the	application.	The	master	supervises	all	application	activities	and	
forks	 the	processes/threads	when	necessary	according	to	 the	graph	maintained	
in	the	shared	memory	segment.	Each	processUnit	registers	its	status	in	the	ap-
propriate	structure;	the	master,	at	polling	interval,	checks	them,	and	verifying	the	
dependences,	starts	or	cancels	the	appropriate	processUnits	and	so	on	up	to	the	
completion of the execution of defined graph. For recovery reasons, as detailed
in	the	Operation	and	Maintenance	Issues	section,	the	processUnit	status	is	also	
registered	on	DBMS.
Whenever	it	is	possible,	useful,	and	quite	simple,	we	have	adopted	a	“declarative	
approach” for implementing the defined functionality. We have a set of declarative
functions	that	can	be	seen	as	a	sort	of	language	that	describes	the	data	of the problem	
and	a	control function,	the	engine,	that	applies	certain	rules	on	these	data.	
This modularization concisely fits the demand of parallelism (a logical operation
in more threads, and correlated operation managed in parallel) and a fine-grained
application	design.	But,	generally	speaking,	for	medium-large	applications,	orga-
nizing	the	code	in	small	units	may	involve	a	great	number	of	them	(processUnit)	
and	a	dependency	graph	too	complex	to	maintain	and	evolve.	
	To	overcome	these	problems,	we	implemented	the	concept	of	“component.”	The	
components	are	logical	structures	embedding	one	or	more	processUnits	with	their	
dependences,	but	at	a	higher	level	of	granularity.	The	concept	of	component	ad-
dresses a top-down approach to the problem; first, one can individuate the logical

�00 Adzic, Fiore, & Sisto

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

blocks	 (components)	 and	 the	 relation	 between	 them	 (dependences),	 then	 “drill	
down” designing and organizing the specific problem in detail using the thin, more
flexible, and near implementation	processUnits.
As	an	example,	the	whole	structure	of	the	application	(processUnit,	component,	
dependence)	consists	of	a	set	of	functions	as	shown	in	the	following	fragment	of	
code:

...
SYNCComponentDefine(“comp�”, <compAttr>);
SYNCComponentDefine(“comp2”, <compAttr>);
... ...
SYNCCompDependenceDefine(“comp2”,”comp�”);
...
SYNCProcessUnitDefine(“comp�”,”pU0”,<pUAattr>);
SYNCProcessUnitDefine(“comp�”,”pU�”,<pUAattr>);
SYNCProcessUnitDefine(“comp�”,”pU2”,<pUAattr>);
SYNCDependenceDefine(“pU0”,NULL,NULL,NULL);
SYNCDependenceDefine(“pU�”,”pU0”,SUCCESS,NULL);
SYNCDependenceDefine(“pU2”,”pU0”,FAILURE,NULL);

SYNCProcessUnitDefine(«comp2»,»pUc2»,<pUAattr>);
SYNCDependenceDefine(«pUc2»,NULL,NULL,NULL);
... ...
SYNCControl();

	
The functions “*Define” describe the problem (storing the data in memory). The
function “*Control” loops on these data applying predefined semantic rules; in this
case	it	starts	a	processUnit	when	the	event	declared	(termination	of	another	pro-
cessUnit	with	a	certain	state)	occurs.	This	approach,	here	seen	for	synchronization	
module,	is	the	same	for	acquire,	transform	and	load	hub,	aggregation	function,	and	
so	forth.	This	declarative	approach	has	been	preferred	to	others,	in	that	it	allows	
synthetic	and	clear	application	code	and	some	standardization	in	developing	several	
infrastructural	modules.
Structuring	the	code	in	components	and	processUnits	is	a	way	to	implement	a	suf-
ficiently clear workflow. The “master” module provides the overall structure of
the	whole	application	giving	evidence	to	the	logical	tasks	involved	and	how	these	
correlate	 to	each	other.	The	application	is	 therefore	 logically	structured	in	com-
ponents,	and	single	components	are	then	organized/implemented	in	processUnits.	
This	two-level	modularization	is	also	useful	for	operations	and	maintenance	issues	
as	described	later.

Extraction, Transformation, and Loading Processes �0�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Main-Memory.Support

In	any	ETL	application,	a	main-memory	support	is	essential	because	of	lookup	op-
erations.	In	a	fact	table,	there	are	always	some	foreign	keys,	and	these	must	be	set	
in	the	loading	phase	with	the	corresponding	value	in	the	dimensional	table.	This	
operation	is	very	simple	and	looks	like	“select	key	from	tab	where	value	=	…”	but	
must	be	repeated	many,	many	times:	10	foreign	key	and	10	millions	rows	to	load	
implies	100	millions	of	“select.”	It	is	clear	that	these	operations	cannot	be	performed	
on	DBMS.	The	solution	is	to	bring	the	dimensional	tables	into	memory,	indexing	
them	(with	simple	hash	structure	or	binary	search)	and	so	perform	the	lookup	op-
eration	without	involving	DBMS.	
These	main-memory	functions	are	adequate	for	simple	cases,	but	often	a	more	so-
phisticated	support	should	be	useful.	Sometimes	a	dimensional	table	must	be	up-
dated	in	consequence	of	information	contained	in	fact	records;	the	same	dimensional	
tables	are	big	and	it	would	be	useful	to	manage	them	in	memory;	the	application	
logic	imposes	some	processing	of	temporary	data	in	memory,	and	so	on.	To	cover	
these	cases	in	great	measure	the	main-memory	support	must	be	read/write	(with	a	
minimal	but	effective	concurrency	control)	and	support	not	only	“select”	but	also	
“insert,”	“delete,”	and	“update.”	This	does	not	mean	that	main-memory	support	for	
ETL	purposes	must	be	a	commercial	main-memory	database.	An	SQL	interface,	
ACID	properties,	full	data	type	set,	and	so	forth	are	rarely	useful	in	our	context	and	
are	expensive;	an	ad-hoc	main-memory	support	often	performs	better	than	a	well-
structured	main-memory	DBMS.
In	a	data	warehouse,	the	fact	tables	are	big	(often	millions	or	billions	of	records)	
because	they	contain	detail	records;	consider	the	single	carton,	canned	foods,	and	
so	forth	bought	at	the	supermarket,	which	are	useful	for	certain	types	of	analysis	
(basket	analysis	in	this	case)	but	useless	for	others.	It	could	be	too	expensive	to	ac-
cess	the	fact	table	every	time,	so	we	need	some	form	of	summary	or	aggregation.	
These	aggregations	are	the	dataset	resulting	from	a	SQL	“group	by”	performed	on	
the	fact	table.	The	simplest	way	to	do	this	is	to	run	a	SQL	at	the	end	of	the	loading	
phase,	but	this	approach	implies	a	serialization	and	a	double	scan	of	the	data	(the	
first read for loading, the second for aggregation). How can one avoid it? In the
loading	phase,	when	one	processes	a	record	and	the	corresponding	aggregate	row	
in	memory	does	not	exist,	one	can	create	a	new	one	and	copy	the	record	data	into	
it;	otherwise,	one	has	to	update	the	existent	aggregate	row	with	its	calculation	(sum,	
count, etc.). This is exactly a “group by” operation, but performed on the fly.
The	aggregation	operation	is	conceptually	simple,	but	very	complex	in	practice;	
memory	allocation	and	indexing,	for	example,	are	not	at	all	prosaic	when	the	volume	
grows	and	with	compound	aggregation	keys.	Building	a	complete	set	of	functions	
to perform these operations with the necessary flexibility is hard and expensive
compared	with	the	facility	of	the	SQL	“group	by”	clause.	This	is	generally	true	in	

�02 Adzic, Fiore, & Sisto

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

batch	systems	where	the	loading	phase	occurs	in	the	night	hours,	and	spending	one	
or	two	hours	to	perform	all	the	required	aggregation	is	acceptable.	However,	in	near	
real	time	contexts,	we	have	small	volume	but	strict	timing	constraints;	further,	it	is	
also	necessary	to	manage	alarm	tables	that	often	require	some	aggregation.	In	this	
area, a set of functions to perform simple aggregation on the fly can be useful and
not	too	hard	to	implement.	Saving	up	some	queries	(after	the	loading)	and	avoidng	
useless read/write can give significant advantage in NRT where ETL processing
has	a	time-slot	of	5-10	minutes.

Acquire, Transform, and Load Hub

The core of every ETL system is the engine that brings together various data flows,
makes	the	transformations,	and	loads	them	into	DBMS.	In	our	solution,	all	of	this	
is	done	in	a	“hub”	with	the	intent	to	minimize	and	parallelize	I/O,	saving	elapsed	
time	and	resource	usage	as	much	as	possible.	However,	before	dealing	with	the	
issue in the whole (the hub), let us look at the several specific aspects: acquisition
scenario	and	loading	techniques.

Acquisition.Scenario

We can acquire data from files, directly from DBMS, or listening to incoming mes-
sages,	but	this	last	eventuality	is	more	typical	in	mediation	systems	than	in	ETL.	
In	the	scholastic	ETL	examples,	there	is	always	a	source	db,	a	target	db,	and	in	
the	middle,	the	ETL	processes.	In	our	experience,	we	never	had	the	opportunity	to	
acquire	the	data	we	needed	directly	from	the	source	DBMS.	It	is	politically	hard	
obtaining	access	to	a	system	owned	by	another	division,	group	or	department,	and	
this	is	the	typical	organizational	scenario	in	a	DW	project.	It	should	not	be	very	
reasonable	for	a	system	manager	to	open	a	system	to	others	and	allow	the	instal-
lation	of	foreign	agents	for	many	understandable	reasons.	A	better	and	more	usual	
way is to define (the owner of data defines) an interface in order to decouple the
source from the target system. The simplest method to do that is the use of flat files.
Direct	extraction	from	source	DBMS	often	is	not	possible;	it	does	not	permit	de-
coupling	systems,	DBMS	may	be	different	(e.g.,	DB2	and	Oracle),	the	data	almost	
always	need	transformations	and	must	be	stored	in	a	staging	table,	but	storing	data	
in a table is more expensive than storing them in files. Another important issue is
that	data	sometimes	come	from	a	DBMS,	but	sometimes	do	not,	or	come	from	a	
closed	system	where	interface	types,	emission	criterion,	naming	rules,	and	so	on	
are predefined and typically not negotiated.
An ETL acquisition process, even if limited to file acquisition, must be able to
manage a great variety of situations, for example, a big file one time a day (zipped,

Extraction, Transformation, and Loading Processes �0�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

compressed, or none) or many little files every few minutes. Some types of files
are positional, other CSV, or coded in XML; sometimes they are plan files or in
master-detail	fashion,	in	ASCII	or	binary	format.	Naming	and	location	rules	have	
a	limit	only	in	the	human	imagination.
It is very difficult to achieve a context formalization/generalization useful to closely
define a model for data acquisition in ETL, but one can define a loose schematization
as	a	base	for	application	software.	As	one	can	see	in	Figure	5,	the	highest	entity	is	
the flow, a set of logically correlated data; an application may need more than one
flow. Many source-to-target mappings may refer to a flow; in other words, a logi-
cal flow may comprise files coming from several distinct systems. In each source-
to-target mapping there can reside several types of files, each of them identifiable
with a selection criterion (usually Unix-like selection but also others specific for
the application). These files may need or not need some preprocessing actions like
uncompress, split in smaller chunks, merge, and other application specific action.
Then, these files must be delivered to their destination (another stage of the process).
For each selection at least one termination criterion must be defined; examples of
these	criteria	may	be	“try	selection	once,”	“repeat	selection	until	condition,”	or	
“other	criterion.”	
As	one	can	see,	this	model	comprises,	in	every	entity,	an	escape	“other”	in	order	
to	leave	the	possibility	to	insert	ad-hoc	code	when	necessary.	In	our	infrastructure,	
we used this schematization to build a set of functions to manage file acquisition.
In	analogy	with	synchronization	functions,	even	in	this	case,	we	have	adopted	the	
previously	described	declarative	approach.

Loading.Techniques

Every DBMS has its own proprietary techniques for massive loading; here we briefly
treat	Oracle,	since	it	is	one	of	the	most	widespread	industrial	DBMS.	Oracle	offers	

Figure 5. Entity schema for data acquisition

FLOW

SOURCE_TARGET

SELECTION

TERM_CRITERION

DESTINATIONPRE_PROCESSING

FLOW

SOURCE_TARGET

SELECTION

TERM_CRITERION

DESTINATIONPRE_PROCESSING

�04 Adzic, Fiore, & Sisto

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

two	methods	to	programmatically	interact	with	a	server:	Pro*C/Fortran/Cobol	and	
so forth, which are a set of precompilers in order to embed SQL into the specific
language	and	OCI	which	are	an	API	callable	from	C/C++.	Pro*C	is	quite	easy	to	use	
but has several limitations (e.g., massive loading) while the OCI is more difficult (or
better speaking, prolix) to use, but constitutes a flexible and complete interface.
Loading	data	in	Oracle,	also	in	massive	parallel	mode,	can	be	simply	done	with	the	
utility	SQLldr which takes a file as input (or many files in parallel mode) and loads
them into specified tables. Another more elegant way to do the same thing is to use
the	external tables; this	method	is	substantially	analogous	to	SQLldr	with	the	dif-
ference	managed	in	SQL.	Using	these	simple	techniques	in	ETL	has	the	drawback	
to add the cost to write a file and to read and parse it by SQLldr.	When	data	sum	
to	dozens	of	gigabytes,	it	becomes	convenient	to	use	Direct	path	OCI4	to	load	data	
directly into the database avoiding useless write and read to file.
As	the	whole	OCI,	these	sets	of	functions	for	direct	path	are	too	complex/prolix	to	
be	utilized	directly	in	the	code.	A	common	way	to	solve	this	problem	is	to	use	an	
OCI	wrapper,	in	other	words,	to	build	a	set	of	functions	suited	for	its	own	purposes	
over	the	OCI	layer	(some	wrappers	are	also	available	via	the	Internet).
Massive	loading	into	a	database	may	impose	heavy	constraints;	indexes	must	be	
inactive,	referential	constraints	cannot	be	used,	particular	criterion	in	extents	allo-
cation	occurs,	and	so	forth.	Not	all	these	limits	can	be	escaped	because	the	use	of	
traditional	SQL	insert	is	not	suited	for	massive	loading	(millions	of	rows	and	more).	
In	ETL,	one	can	use	SQL	only	for	managing	dimension	or	loading	fact	in	NRT	
with	small	volumes.	Massive	loading	does	not	generally	support	commit/rollback	
statements,	so	one	needs	to	build	one’s	own	error	checks	and	perform	rollback	by
hand.	How	to	manage	and	recover	errors,	in	loading,	but	even	in	other	cases,	will	
be	discussed	in	the	“Operation	and	Maintenance	Issue”	section.

Transform and Load Hub

Acquisition,	especially	transform	and	load,	are	operations	that	involve	I/O	and	CPU-
bound	operations	tightly	correlated	with	each	other	and	so	they	are	well	suited	to	be	
parallelized	for	performance.	Only	in	very	special	cases,	the	data	must	be	processed	
in	sequential	order;	normally,	records	need	to	be	transformed	and	loaded	in	relational	
tables	in	an	independent	way.	This	assumption	makes	a	single	row	parallelization	
possible;	each	row	can	be	acquired,	transformed,	and	loaded	independently,	having	
many	pipelines	in	parallel.	This	“row	pipelined”	model,	very	clean	in	theory,	has	a	
drawback	in	implementation;	passing	rows	through	many	stages	involves	a	lot	of	
synchronization	that	can	become	relevant	compared	with	the	cost	of	single	stage	
itself.	A	better	solution	is	to	extend	the	“row	pipeline”	model	to	a	“block	pipeline”	
one,	where	 single	blocks	contain	a	 certain	number	of	 rows.	 In	 this	manner,	we	
maintain	parallelism/pipeline	mechanism	reducing	the	weight	of	synchronization,	

Extraction, Transformation, and Loading Processes �0�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

memory	passing,	and	routines	invocation	times.	Working	with	blocks	of	data	more-
over	paves	the	way	for	treating	master-detail	and	other	strange	formats	in	which	
records	are	correlated.	In	summary,	the	block	pipeline	model	contains	the	cost	of	
synchronization,	preserves	a	general	parallel/pipeline	mechanism,	and	leaves	the	
possibility	to	manage	some	form	of	sequential	order.
Transforming	 a	 record	 essentially	 means	 working	 with	 strings	 and	 performing	
lookup	operations	in	memory	(foreign	keys	valorization).	One	can	use	the	well-
known string functions available in Unix, but a more efficient way is to write ad-
hoc	simple	macros	that	copy	tokens	from	input	to	output	buffer,	save	it	in	local	
variables,	pad	the	output	string	with	blanks,	and	so	on,	thus	increasing	the	set	every	
time	one	needs	some	new	basic	functionality.	Working	with	blocks	of	data	implies	
that	the	transformation	code	must	be	structured	in	nested	loops	(an	outer	“while	
<incoming_blocks>”	and	an	inner	“while	<records_in_block>”),	inside	which	the	
transformation	macros	can	take	place.	The	main	implementation	problem	is,	how-
ever,	how	to	pass	a	block	of	data	from	one	stage	to	the	next	and	how	to	exploit	the	
waiting	time	correlated	to	I/O	operations.
In	Figure	6	we	depict	the	basic	scheme	we	adopted	in	our	infrastructure.
We	have	two	pools	of	buffers:	one	for	input	data	and	one	for	output	data.	A	pool	of	
thread readers fill the input buffers; a pool of processUnits pick the filled buffers,
transform, and write them into the output buffers; and finally another pool of thread
writers downloads the filled buffers into database or flat files.
Aside	from	implementation	details	concerning	the	multibuffer	pool,	 there	 is	 the	
capability	 to	 link	one	 input	 channel	 to	many	output	 channels,	 the	possibility	 to	

Figure 6. Schema of the transformation hub

thread pool
reader

input buffer pools

output buffer pools
input data
(from LSN, other)

elab processUnit

Loader module

thread pool
writer

�0 DBMS,
flat-file, etc.

�06 Adzic, Fiore, & Sisto

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

integrate	in	this	scheme	the	listening	functionalities,	and	so	forth.	The	core	of	this	
solution	is	the	use	of	condition	variables	to	manage	synchronization.	As	one	can	
see	in	Figure	7,	pseudocode,	the	synchronization	scheme,	is	quite	simple.
This	mechanism	gives	one	complete	parallelism	in	reading/elab/writing	(read-ahead	
and	write-behind)	using	simple	read()	and	write()	functions.	
This approach gives a clear definition of the data flow, where these come from,
where	their	transformation	code	resides,	and	what	their	target	is.	All	the	transfor-
mation	code	is	contained	in	a	processUnit	(“elab()”	in	the	schema	above)	where	
the	incoming	data,	at	application	level,	are	viewed	record	by	record,	but	internally	
processed	block	by	block	for	performance	reasons.
We	have	spoken	about	a	“hub”	because	this	architecture	with	several	buffer	pools,	
several groups of specialized threads (for reading from file or another database,
for writing in direct path or SQL or to file, etc.), several groups of transformation
threads	(in	which	application	code	resides)	is	well	suited	to	be	viewed	as	a	hub,	in	
which many flows converge and other data flows are delivered to different DBMS
tables	or	other	destinations.

Operation.and.Maintenance.Issues

One	of	the	most	critical	aspects	in	a	DW	project	is	“operation	and	maintenance”	
(O&M).	Even	the	best	ETL	application	can	fail	for	many	reasons,	sometimes	due	

Figure 7. An example of pseudocode for the transformation hub

Extraction, Transformation, and Loading Processes �0�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

to	a	DBMS	problem,	an	always	possible	application	bug,	or	a	hardware	failure;	but	
above	all,	a	loading	process	can	fail	due	to	an	external	problem:	absence	or	cor-
ruption	of	data,	unavailability	of	some	source	systems,	and	so	forth.	In	any	case,	
a	failure	anywhere	in	the	process	causes	a	corruption,	data	inconsistency,	or	data	
loss.	But	we	have	to	be	straight;	sometimes	a	loss	of	data	is	allowed,	sometimes	
not.	Sometimes	one	can	skip	a	loading	phase	and	retry	it	later,	and	sometimes	data	
must	be	loaded	without	“holes.”	DW	requirements,	even	in	this	perspective,	are	
wide-ranging,	so	one	system	can	meet	its	requirements	almost	ignoring	the	O&M	
issues,	and	for	another	stability	and	“fault-tolerance”	are	mandatory.
Even	in	a	quiet	scenario	like	a	population	in	nightly	window,	when	in	the	morn-
ing	one	sees	that	a	failure	has	occurred,	it	is	really	hard	to	detect	the	bug,	localize	
the	corrupted	or	incomplete	data,	clean	them,	and	restart	the	application	at	the	old	
point-in-time.	It	is	hard	because	one	is	under	stress,	the	time	in	hand	is	constrained,	
and	the	users	claim	to	access	the	DW.	In	an	ETL	application	that	does	not	consider	
the aspects of efficient managing, the interrupted DW loads cannot be defined as
“robust.”	Some	works	in	the	literature	discuss	the	problems	related	to	resumption	
of	interrupted	DW	loads	(Labio,	Wiener,	Garcia-Molina,	&	Gorelik,	2000).
The	simplest	way	to	guarantee	the	data	consistency	in	case	of	failure	is	to	manage	
a	global rollback involving all loaded and modified data, quite easy for loaded data
(all the loaded partitions need to be truncated), a bit more difficult for the modi-
fied data (tables must be restored with the previously saved data). This approach
is	functional	in	case	of	serious	and	complex	failures,	but	when	a	problem	involves	
only	the	data	portion	of	the	ETL	process	(e.g.,	an	updating	of	a	dimensional	table),	
it	could	be	unacceptable	to	throw	out	all	jobs	just	done,	especially	when	the	entire	
process	requires	hours.	
A	better	way	to	manage	partial	failures	is	to	organize	the	ETL	process	in	functional	
components	 (even	 useful	 for	 documentation/modularization	 purposes)	 that	 can	
be	 individually	 recovered.	Previously,	we	described	processUnits	 (small	 blocks	
of code) and the synchronization engine that starts them according to predefined
rules. This modularization is too fine-grained for recovery purposes (how can one
recover	from	a	failure	of	a	single	processUnit	instance),	so	we	built	over	them	a	
logical	container	of	processUnit	called	component.	These	components	look	like	a	
processUnit,	but	on	a	higher	level	they	have	a	termination	status;	their	dependency	
rules	are	structured	in	simple	trees	and	not	in	graphs.	Each	component	can	then	
have	an	associated	recoveryProcessUnit,	so	called	because	it	keeps	the	undo	code	
(e.g.,	truncate	partition).
The	synchronization	engine	keeps	track	(on	the	DBMS)	of	the	termination	status	of	
a	single	processUnit,	so	the	engine	can	evaluate	the	status	of	each	component	and	
of	the	entire	ETL	process	itself.	At	the	end,	we	have	a	status	table	that	says	if	some	
failure	has	occurred	(the	process	needs	recovery)	and	which	component	has	failed.	
With	this	information,	we	can	recover	only	the	failed	components	and,	which	is	

�08 Adzic, Fiore, & Sisto

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

important,	in	an	automatic	way.	Simplifying,	the	synchronization	engine,	running	
in	recovery	mode,	has	to	do	a	reversal	of	the	component	status	and	then	start	only	
the	failed	components	(or	to	be	more	precise,	the	processUnits	of	the	failed	compo-
nents).	In	practice,	there	are	some	further	complications;	a	component	in	recovery	
mode	can	depend	on	a	previous	one	that	has	not	failed	but	must	be	rerun	because	it	
does	an	initialization	job	(and	so	we	have	introduced	the	onRecovery	dependence);	
then	the	process	running	in	recovery	mode	must	always	use	a	point-in-time	date	
and	so	on	with	other	little	complications.
The technique briefly depicted above fits in the batch scenario; a population oc-
curs	 at	night,	 in	 the	morning	O&M	operators	 see	 the	errors,	 remove	 the	cause,	
and	rerun	the	application	in	recovery	mode.	All	the	undo	operations	are	coded	in	
the	recoveryProcessUnit,	and,	if	the	causes	of	failure	were	transient	or	have	been	
removed,	the	system	can	recover	the	failed	portion	of	the	ETL	job	without	human	
intervention	on	DBMS.	
In	the	NRT	context,	where	a	population	cycle	occurs	every	hour	or	less,	 the	re-
covery	process	needs	 to	be	managed	 in	an	automatic	way	as	much	as	possible.	
An	H24	operator	can	hardly	check	the	result	of	every	cycle;	the	solution	is	to	use	
a	standby	recovery	application.	Therefore,	 there	are	 two	running	applications:	a	
primary	application	instance	that	does	its	job	at	scheduled	intervals	and	a	recovery
application	instance	that	checks	the	status	of	the	primary	and,	if	required,	performs	
the	recovery,	otherwise	sleeps	until	next	check.	The	recovery	mechanism	and	the	
status	table	are	the	same	as	we	have	seen	before.	Obviously,	due	to	the	absence	of	
human	intervention,	this	mechanism	can	recover	only	transient	errors	(e.g.,	a	lack	
in	the	network).	

Future.Trends.and.Conclusion

As	the	computational	power	of	today’s	equipments	grows,	the	performance	constraints	
become	less	strong.	That	is	clear	evidence	in	the	whole	computer	science	also	valid	
for	ETL.	In	the	near	future,	it	may	be	possible	to	see	ETL	tools/system	written	in	
Java	with	sophisticated	metadata	support	that	works	well	in	an	application	context	
where	today	we	have	cryptic	C	programs.	But,	if	it	is	true	that	machines	run	faster	
and	faster,	even	the	volumes	of	data	grow,	so	that	there	will	always	be	the	“border	
line”	applications	where	the	performance	constraints	are	again	strong.
With	regard	to	the	possible	spread	of	some	kind	of	intersystems	communication	
standards/guidelines,	we	are	a	little	more	skeptical;	these	forms	of	standardization	
do	not	have	a	strong	economic	boost,	involve	delicate	internal	organization	bal-
ance,	and	are	really	a	too	complex	job.	In	our	opinion,	the	ETL	complexity	is	also	
directly	correlated	 to	high	volumes,	 timing	constraints,	 reliability	 requirements,	

Extraction, Transformation, and Loading Processes �0�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

and	so	forth	that	need	very	sophisticated	techniques.	One	of	the	main	criticalities	
in	facing	an	ETL	project	consists	in	evaluating	the	impact	of	different	choices	in	
order	to	weigh	their	costs	in	different	perspectives	(performance,	etc.),	and	making	
decisions	respecting	the	balance	of	the	system	in	its	wholeness.	
In	this	chapter,	we	have	proposed	an	infrastructural	approach	to	ETL	as	an	optimal	
solution for a specific class of problems in large DW; we have given some practical
suggestions	in	order	to	address	typical	implementation	issues,	leaving	other	aspects	
and	points	of	view	in	the	background.	

References

Adzic,	 J.,	&	Fiore,	V.	 (2003,	September).	Data	warehouse	population	platform.	
In	Proceedings of the International Workshop on Design and Management
of Data Warehouses (DMDW03).	Berlin,	German.	Retrieved	May	27,	2006,	
from	 http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
77/08_Adzic.pdf

Gartner.	(2005,	May).	ETL Magic Quadrant update.	Retrieved	May	25,	2006,	from	
http://www.gartner.com/displaydocument?doc_cd=127170

Golfarelli,	M.,	&	Rizzi,	S.	(1998,	November).	Methodological framework for data
warehouse design.	Paper	presented	at	the	ACM	First	International	Workshop	
on	Data	Warehousing	and	OLAP	(DOLAP	’98),	Bethesda,	Maryland.

Husemann,	B.,	Lechtenborger,	J.,	&	Vossen,	G.	(2000).	Conceptual	data	warehouse	
modeling.	In	Proceedings of the 2nd International Workshop on Design and
Management of Data Warehouses (DMDW00),	Stockholm,	Sweden.	

IBM.	(2005).	IBM Data Warehouse Manager overview.	Retrieved	May	27,	2006,	
from	http://www-306.ibm.com/software/data/db2/datawarehouse/

Informatica.	(2005).	PowerCenter 6. Retrieved	May	27,	2006,	from	http://www.
informatica.com/products/powercenter/default.htm

Kimball,	R.,	&	Caserta,	J.	(2004).	The data warehouse ETL toolkit: Practical tech-
niques for extracting, cleaning, conforming, and delivering data warehouse.	
New	York:	John	Wiley	&	Sons.

Kimball,	R.,	Reeves,	L.,	Ross,	M.,	&	Thornthwaite,	W.	(1998).	The data warehouse
lifecycle toolkit: Expert methods for designing, developing, and deploying data
warehouses.	New	York:	John	Wiley	&	Sons.		

Labio, W., Wiener, J. L., Garcia-Molina, H., & Gorelik, V. (2000). Efficient re-
sumption	of	interrupted	warehouse	loads.	In	Proceedings of the SIGMOD’00,	
Texas	(pp.	46-57).

��0 Adzic, Fiore, & Sisto

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Microsoft	Corp.	(2005).	SQL Server 2005: Data management and analysis solution.
Retrieved	May	27,	2006,	from	http://www.microsoft.com/sql/default.mspx

Oracle	Corp.	(2005).	Oracle Warehouse Builder 10G.	Retrieved	May	27,	2006,	from	
http://www.oracle.com/technology/products/warehouse/index.html	

Tryfona,	N.,	Busborg,	F.,	&	Christiansen,	J.	G.	B.	(1999,	November	6).	starER:	A	
conceptual	model	for	data	warehouse	design.	In	Proceedings of the ACM Sec-
ond International Workshop on Data Warehousing and OLAP (DOLAP’99),	
Missouri	(pp.	3-8).

Vassiliadis,	P.,	Simitsis,	A.,	Georgantas,	P.,	&	Terrovitis,	M.	(2003,	June).	A frame-
work for the design of ETL scenarios.	Paper	presented	at	the	15th	Conference	
on	Advanced	 Information	 Systems	 Engineering	 (CAiSE	 ’03),	 Klagenfurt,	
Austria.

Vassiliadis,	P.,	Simitsis,	A.,	&	Skiadopoulos,	S.	(2002).	Modeling	ETL	activities	as	
graphs.	In	Proceedings of the Design and Management of Data Warehouses
(DMDW’2002) 4th International Workshop in conjunction with CAiSE’02,	
Toronto,	Canada	(pp.	52-61).

Vassiliadis,	P.,	 Simitsis,	A.,	&	Skiadopoulos,	S.	 (2002,	November).	Conceptual	
modeling	for	ETL	processes.	In	Proceedings of the Data Warehousing and
OLAP (DOLAP2002) ACM 5th International Workshop in conjunction with
CIKM’02,	McLean,	VA.

Endnotes

1	 If	the	relationship	between	partitions	and	table	space	is	1:1,	then	one	must	
dimension	all	the	table	spaces	to	be	large	enough	to	contain	the	biggest	parti-
tion; in the proposed configuration many partitions share the same table space
and	so	it	must	be	dimensioned	to	contain	“n”	average	weight	partitions.	

2	 Oracle	Call	 Interface:	 a	 set	of	 low	 level	 functions	 (API)	 to	 access	DBMS	
functionality.

3	 OS	API	Posix:	Posix	is	a	family	of	open	standards	based	on	Unix;	following	
Posix	model	guarantees	portability	especially	in	the	case	of	thread	API	(SUN,	
for	example,	besides	Posix,	has	a	proprietary	threading	model).

4	 Direct	path	OCI	are	an	API	allowing	massive	loading	in	Oracle	in	the	same	
way	as	SQLldr.

Data Warehouse Refreshment ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Chapter.V

Data.Warehouse.
Refreshment

Alkis Simitisis
National Technical University of Athens, Greece

Panos Vassiliadis
University of Ioannina, Greece

Spiros Skiadopoulos
University of Peloponnese, Greece

Timos Sellis
National Technical University of Athens, Greece

Abstract

In the early stages of a data warehouse project, the designers/administrators have
to come up with a decision concerning the design and deployment of the backstage
architecture. The possible options are (a) the usage of a commercial ETL tool or
(b) the development of an in-house ETL prototype. Both cases have advantages and
disadvantages. However, in both cases the design and modeling of the ETL work-
flows have the same characteristics. The scope of this chapter is to indicate the main
challenges, issues, and problems concerning the manufacturing of ETL workflows,
in order to assist the designers/administrators to decide which solution suits their
data warehouse project better and to help them construct an efficient, robust, and
evolvable ETL workflow that implements the refreshment of their warehouse.

��2 Simitsis, Vassiliadis, Skiadopoulos, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Introduction

In	 the	 past,	 research	 has	 treated	data	warehouses	 as	 collections	 of	materialized	
views. Although this abstraction is elegant and possibly sufficient for the purpose
of examining alternative strategies for view maintenance, it is sufficient enough
to	describe	the	structure	and	contents	of	a	data	warehouse	in	real-world	settings.	
Vassiliadis,	Quix,	Vassiliou,	and	Jarke	(2001)	bring	up	the	issue	of	data warehouse
operational processes and deduce the definition of a table in the data warehouse as
the	outcome	of	the	combination	of	the	processes	that	populate	it.	This	new	kind	of	
definition complements existing approaches, since it provides the operational seman-
tics for the content of a data warehouse table, whereas the existing definitions give
an	abstraction	of	its	intentional	semantics.	Indeed,	in	a	typical	mediation	scheme	
one	would	pose	a	query	to	a	“virtual”	data	warehouse,	dispatch	it	to	the	sources,	
answer	parts	of	it	there,	and	then	collect	the	answers.	On	the	contrary,	in	the	case	
of	data	warehouse	operational	processes,	the	objective	is	to	carry	data	from	a	set	of	
source	relations	and	eventually	load	them	in	a	target	(data	warehouse)	relation.	To	
achieve this goal, we have to (a) specify data transformations as a workflow and
(b) optimize and execute the workflow.
Data warehouse operational processes normally compose a labor intensive workflow
and	constitute	an	integral	part	of	the	backstage	of	data	warehouse	architectures.	To	
deal with this workflow and in order to facilitate and manage the data warehouse
operational processes, specialized workflows are used under the general title ex-
traction	transformation	loading	(ETL) workflows. ETL workflows are responsible
for	the	extraction	of	data	from	several	sources,	their	cleansing,	their	customization	
and transformation, and finally, their loading into a data warehouse.
ETL workflows represent an important part of data warehousing, as they represent
the	means	by	which	data	actually	get	loaded	into	the	warehouse.	To	give	a	general	
idea of the functionality of these workflows we mention their most prominent tasks,
which	include:	

•	 The	identification	of	relevant	information	at	the	source	side
•	 The	extraction	of	this	information	
•	 The	transportation	of	this	information	to	the	DSA
•	 The	 transformation	(i.e.,	customization	and	integration)	of	the	information	

coming	from	multiple	sources	into	a	common	format	
•	 The	cleaning	of	the	resulting	dataset,	on	the	basis	of	database	and	business	

rules
•	 The	propagation	and	loading	of	the	data	to	the	data	warehouse	and	the	refresh-

ment	of	data	marts

Data Warehouse Refreshment ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

In	the	sequel,	we	will	adopt	the	general	acronym	ETL	for	all	kinds	of	in-house	or	
commercial	tools,	and	all	the	aforementioned	categories	of	tasks/processes.	
In	Figure	1,	we	abstractly	describe	the	general	framework	for	ETL	processes.	On	
the	left	side,	we	can	observe	the	original	data	stores	(sources)	that	are	involved	in	
the overall process. Typically, data sources are relational databases and files. The
data	from	these	sources	are	extracted	by	specialized	routines	or	tools,	which	provide	
either	complete	snapshots	or	differentials	of	the	data	sources.	Then,	these	data	are	
propagated	to	the	data	staging	area	(DSA)	where	they	are	transformed	and	cleaned	
before	being	loaded	into	the	data	warehouse.	Intermediate	results,	again	in	the	form	
of (mostly) files or relational tables are part of the data staging area. The data ware-
house	(DW)	is	depicted	in	the	right	part	of	Figure	1	and	comprises	the	target	data	
stores,	that	is,	fact	tables	for	the	storage	of	information	and	dimension	tables	with	
the	description	and	the	multidimensional	rollup	hierarchies	of	the	stored	facts.	The	
loading	of	the	central	warehouse	is	performed	from	the	loading	activities	depicted	
in	the	right	side	before	the	data	warehouse	data	store.
Despite	the	plethora	of	commercial	solutions	that	offer	ad-hoc	capabilities	for	the	
creation	of	an	ETL	scenario,	a	designer/administrator	needs	a	concrete	method	to	
develop an efficient, robust, and evolvable ETL workflow. Therefore, this chapter
intends	to	point	out	the	main	challenges	and	issues	concerning	the	generic	construc-
tion of ETL workflows. As an outline, in the rest of the chapter, we proceed with
a	brief	presentation	about	the	state	of	the	art	in	ETL	technology.	Afterwards,	we	
discuss why the modeling of ETL workflows is important and we indicate the main
problems	that	arise	during	all	the	phases	of	an	ETL	process.	Moreover,	we	present	
a modeling approach for the construction of ETL workflows, which is based on
the	life	cycle	of	the	data	warehouse,	along	with	an	exemplary	research	framework	
named	Arktos	II.	Finally,	we	list	several	open	research	challenges	that	proclaim	
ETL	as	a	commodity	of	future	research.

Figure 1. The environment of extraction-transformation-loading processes (Sim-
itsis, 2004)

Sources

Extract Transform.
&.Clean

DW

Load

DSA

��4 Simitsis, Vassiliadis, Skiadopoulos, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Background

In	this	section,	we	present	ETL	methodologies	that	are	proposed	by	(a)	commercial	
studies	and	tools	and	(b)	the	research	community.	Then,	we	present	the	reasons	and	
the	motives	that	signify	the	research	on	ETL	processes	is	a	valid	research	goal.

State.of.the.Art

•	 Commercial.studies.and.tools:	In	terms	of	technological	aspects,	the	main	
characteristic	of	the	area	is	the	involvement	of	traditional	database	vendors	
with	ETL	solutions	built	in	the	DBMS.	The	three	major	database	vendors	that	
practically	ship	ETL	solutions	“at	no	extra	charge”	are	pinpointed:	Oracle	with	
Oracle	Warehouse	Builder	(Oracle,	2001),	Microsoft	with	Data	Transformation	
Services	(Microsoft,	2003),	and	IBM	with	the	Data	Warehouse	Center	(IBM,	
2003).	Still,	the	major	vendors	in	the	area	are	Informatica’s	Powercenter	(In-
formatica,	2003)	and	Ascential’s	DataStage	suites	(Ascential,	2003)	(the	latter	
part	of	the	IBM	recommendations	for	ETL	solutions).	As	a	general	comment,	
we emphasize the fact that the former three have the benefit of the minimum
cost,	because	they	are	shipped	with	the	database,	while	the	latter	two	have	the	
benefit to aim at complex and deep solutions not envisioned by the generic
products.	The	aforementioned	discussion	is	supported	from	a	second	recent	
study	(Gartner,	2003),	where	the	authors	note	the	decline	in	license	revenue	
for	pure	ETL	tools,	mainly	due	to	the	crisis	of	IT	spending	and	the	appearance	
of	ETL	solutions	from	traditional	database	and	business	intelligence	vendors.	
The	Gartner	study	discusses	the	role	of	the	three	major	database	vendors	(IBM,	
Microsoft,	Oracle)	and	points	out	that	they	slowly	start	to	take	a	portion	of	the	
ETL	market	through	their	DBMS-built-in	solutions.

•	 Research focused specifically on ETL: The	AJAX	system	(Galhardas,	Flo-
rescu,	Shasha	&	Simon,	2000)	 is	a	data	cleaning	tool	developed	at	INRIA	
France.	It	deals	with	typical	data	quality	problems,	such	as	the object identity
problem (Cohen,	 1999), errors due to mistyping, and	data inconsistencies	
between	matching	records.	AJAX	provides	a	framework	wherein	the	logic	of	
a	data	cleaning	program	is	modeled	as	a	directed	graph	of	data	transforma-
tions	that	start	from	some	input	source	data.	AJAX	also	provides	a	declarative	
language	for	specifying	data	cleaning	programs,	which	consists	of	SQL	state-
ments enriched with a set of specific primitives to express mapping, matching,
clustering,	and	merging	transformations.	Finally,	a	interactive	environment	is	
supplied	to	the	user	in	order	to	resolve	errors	and	inconsistencies	that	cannot	
be automatically handled and support a stepwise refinement design of data
cleaning	programs.	The	theoretic	foundations	of	this	tool	can	be	found	in	Gal-
hardas,	Florescu,	Shasha,	and	Simon	(1999),	where	apart	from	the	presentation	

Data Warehouse Refreshment ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

of a general framework for the data cleaning process, specific optimization
techniques	tailored	for	data	cleaning	applications	are	discussed.

	 The	Potter’s Wheel	system	(Raman	&	Hellerstein,	2001),	is	targeted	to	pro-
vide	interactive	data	cleaning	to	its	users.	The	system	offers	the	possibility	
of	performing	several	algebraic	operations	over	an	underlying	dataset.	Opti-
mization	algorithms	are	also	provided	for	the	CPU	usage	for	certain	classes	
of	operators.	The	general	idea	behind	Potter’s	Wheel	is	that	users	build	data	
transformations	in	iterative	and	interactive	ways.	In	the	background,	Potter’s	
Wheel automatically infers structures for data values in terms of user-defined
domains,	and	accordingly	checks	for	constraint	violations.	Users	gradually	
build	transformations	to	clean	the	data	by	adding	or	undoing	transforms	on	a	
spreadsheet-like	interface;	the	effect	of	a	transform	is	shown	at	once	on	records	
visible on screen. These transforms are specified either through simple graphi-
cal	operations,	or	by	showing	the	desired	effects	on	example	data	values.	

•	 Data.quality.and.cleaning:	Jarke,	List,	and	Koller	(2000)	present	an	exten-
sive	review	of	data	quality	problems	and	related	literature,	along	with	quality	
management	 methodologies.	 Rundensteiner	 (1999)	 offers	 a	 discussion	 on	
various	aspects	on	data	transformations.	Sarawagi	(2000)	presents	a	similar	
collection of papers in the field of data cleaning including a survey (Rahm &
Hai Do, 2000) that provides an extensive overview of the field, along with re-
search issues and a review of some commercial tools and solutions on specific
problems	(Borkar,	Deshmuk,	&	Sarawagi,	2000;	Monge,	2000).	In	a	related	
but	different	context,	we	would	like	to	mention	the	IBIS	tool	(Calì,	Calvanese,	
De	Giacomo,	Lenzerini,	Naggar,	&	Vernacotola,	2003).	IBIS	is	an	integration	
tool	following	the	global-as-view	approach	to	answer	queries	in	a	mediated	
system.	Departing	from	the	traditional	data	integration	literature	though,	IBIS	
brings	the	issue	of	data	quality	into	the	integration	process.	The	system	takes	
advantage of the definition of constraints at the intentional level (e.g., foreign
key constraints) and tries to provide answers that resolve semantic conflicts
(e.g.,	the	violation	of	a	foreign	key	constraint).

•	 Workflow and process models: In general, research on workflows is focused
around	the	following	reoccurring	themes:	(a)	modeling	(Eder	&	Gruber,	2002;	
Kiepuszewski,	ter	Hofstede,	&	Bussler,	2000;	Sadiq	&	Orlowska,	2000;	Van	
der Aalst, ter Hofstede, Kiepuszewski, & Barros, 2000; Workflow Manage-
ment	Coalition,	1998),	where	the	authors	are	primarily	concerned	in	provid-
ing a metamodel for workflows; (b) correctness issues (Eder & Gruber, 2002;
Kiepuszewski	et	al.,	2000;	Sadiq	&	Orlowska,	2000),	where	criteria	are	es-
tablished to determine whether a workflow is well formed, and (c) workflow
transformations	(Eder	&	Gruber,	2002;	Kiepuszewski	et	al.,	2000;	Sadiq	&	
Orlowska,	2000)	where	the	authors	are	concerned	with	correctness	issues	in	
the evolution of the workflow from a certain plan to another.

��6 Simitsis, Vassiliadis, Skiadopoulos, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

•	 Applications of ETL workflows in data warehouses: Finally,	the	literature	
reports	several	efforts	(both	research	and	industrial)	for	the	management	of	
processes and workflows that operate on data warehouse systems. Jarke,
Quix,	Blees,	Lehmann,	Michalk,	and	Stierl	(1999)	describe	an	industrial	ef-
fort	where	the	cleaning	mechanisms	of	the	data	warehouse	are	employed	in	
order to avoid the population of the sources with problematic data in the first
place. The described solution is based on a workflow which employs tech-
niques from the field of view maintenance. Schafer, Becker, and Jarke (2000)
describe	an	industrial	effort	at	Deutche	Bank,	 involving	the	import/export,	
transformation	and	cleaning,	and	storage	of	data	in	a	terabyte-size	data	ware-
house.	The	authors	explain	also	the	usage	of	metadata	management	techniques,	
which	involves	a	broad	spectrum	of	applications,	from	the	import	of	data	to	
the	management	of	dimensional	data	and	more	importantly	for	the	querying	
of	the	data	warehouse.	Jarke	et	al.	(2000)	present	a	research	effort	(and	its	
application	in	an	industrial	application)	for	the	integration	and	central	man-
agement	of	the	processes	that	lie	around	an	information	system.	A	metadata	
management	repository	is	employed	to	store	the	different	activities	of	a	large	
workflow, along with important data these processes employ.

Motivation.

All	engineering	disciplines	employ	blueprints	during	the	design	of	their	engineering	
artifacts.	Modeling	in	this	fashion	is	not	a	task	with	a	value,	per	se;	as	Booch,	Rum-
baugh,	and	Jacobson	(1998)	mention	“we	build	models	to	communicate	the	desired	
structure	and	behavior	of	our	system	…	to	visualize	and	control	the	system’s	archi-
tecture	…	to	better	understand	the	system	we	are	building	…	to	manage	risk.”
Discussing the modeling of ETL workflows is important for several reasons. First,
the	data	extraction,	transformation,	integration,	and	loading	process	is	a	key	part	of	
a	data	warehouse.	The	commercial	ETL	tools	that	are	available	on	the	market	the	
last	few	years	increased	their	sales	from	US$101	million	dollars	in	1998	to	US$210	
million	dollars	in	2002,	having	a	steady	increase	rate	of	approximately	20.1%	each	
year	(Jarke,	Lenzerini,	Vassiliou,	&	Vassiliadis,	2003).	The	same	survey	indicates	
that	ETL	tools	are	in	the	third	place	of	the	annual	sales	of	the	overall	components	
of a data warehouse with the RDBMS sales for data warehouses in the first place
(40%	each	year	since	1998)	and	data	marts	(25%)	in	the	second	place.
Also,	ETL	processes	constitute	the	major	part	of	a	data	warehouse	environment,	
resulting	in	the	corresponding	development	effort	and	cost.	Data	warehouse	opera-
tional	processes	are	costly	and	critical	for	the	success	of	a	data	warehouse	project,	
and	their	design	and	implementation	has	been	characterized	as	a	labor-intensive	
and	 lengthy	procedure	 (Demarest,	 1999;	Shilakes	&	Tylman,	 1998;	Vassiliadis,	
2000).	Several	reports	mention	that	most	of	these	processes	are	constructed	through	

Data Warehouse Refreshment ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

an	in-house	development	procedure	that	can	consume	up	to	70%	of	the	resources	
for	a	data	warehouse	project	(Giga,	2002;	Strange,	2002).	Complementary	reports	
(Friedman, 2002; Strange, 2002a) address the factors that influence the cost of its
implementation	 and	 support:	 (a)	 staff	 (development,	 application	 support	 teams,	
on-going	support	and	maintenance,	and	operations);	(b)	computing resources	(dedi-
cated ETL server, disk storage for “temporary” or staging files, CPU use of servers
hosting	source	data,	and	annual	maintenance	and	support);	 (c)	 tools acquisition	
(annual	maintenance	support	and	training);	(d)	latency	(timeliness	of	the	delivery	
of	data	to	the	target	environment	impacts	the	overall	effectiveness	of	BI);	and	(e)	
quality (flaws in data distilled from ETL processes can severely limit BI adoption).
Each of these components directly influences the total cost of ownership of a data
warehouse	implementation	and	operation.	
For	example,	Strange	(2002)	mentions	the	development	of	a	data	warehouse	realized	
in the Fortune 500 financial institution. This development included the support of
the	data	warehouse	for	applications	to	perform	customer	retention	analysis,	bank	
loan	risk	management,	customer	contact	history,	and	many	other	applications.	There	
were	100	people	on	the	data	warehouse	team	(approximately	8.5%	of	the	overall	
IT	staff)—55	from	ETL,	four	database	administrators,	four	architects,	four	systems	
administrators, nine BI competency center workers (assisting end users), five report
writers,	nine	managers,	and	nine	hardware,	operating	system,	and	operations	support	
staff	members.	These	55	individuals	were	responsible	for	building	and	maintain-
ing	the	ETL	process,	which	includes	46	different	source	systems.	Responsibilities	
include	updates	of	data	marts	on	a	weekly	and	monthly	basis.	This	does	not	include	
staff	from	operations	to	support	the	execution	of	the	ETL	processes.	They	used	a	
large	parallel	server	platform	that	is	consisted	of	multiple	silver	nodes	(four	pro-
cessors	per	node)	and	four	terabytes	or	more	of	disk	storage,	at	an	acquisition	cost	
over	three	years	of	US$5	million.	The	cost	of	the	ETL	tool	used	was	US$1	million,	
excluding	the	yearly	maintenance	and	support	costs.
Moreover,	these	processes	are	important for	the	correctness,	completeness,	and	fresh-
ness	of	data	warehouse	contents,	since	not	only	do	they	facilitate	the	population	of	
the	warehouse	with	up-to-date	data,	but	they	are	also	responsible	for	homogenizing	
their	structure	and	blocking	the	propagation	of	erroneous	or	inconsistent	entries.	
In addition, these data intensive workflows are quite complex	in	nature,	involving	
dozens	of	sources,	cleaning	and	 transformation	activities,	and	 loading	facilities.	
Bouzeghoub,	Fabret,	and	Matulovic	(1999)	mention	that	the	data	warehouse	re-
freshment	process	can	consist	of	many	different	subprocesses,	like	data	cleaning,	
archiving,	 transformations,	and	aggregations,	 interconnected	 through	a	complex	
schedule.	For	instance,	Adzic	and	Fiore	(2003)	report	a	case	study	for	mobile	network	
traffic data, involving around 30 data flows and 10 sources, while the volume of data
rises	to	about	2	TB,	with	the	main	fact	table	containing	about	3	billion	records.	The	
throughput	of	the	(traditional)	population	system	is	80	million	records	per	hour	for	
the entire process (compression, FTP of files, decompression, transformation, and

��8 Simitsis, Vassiliadis, Skiadopoulos, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

loading),	on	a	daily	basis,	with	a	loading	window	of	only	4	hours.	The	request	for	
performance	is	so	pressing	that	there	are	processes	hard-coded	in	low	level	DBMS	
calls to avoid the extra step of storing data to a target file to be loaded to the data
warehouse	through	the	DBMS	loader.	In	general,	Strange	(2002a)	notes	that	the	
complexity of the ETL process, as well as the staffing required to implement it, de-
pends	mainly	on	the	following	variables:	(a)	the	number	and	variety	of	data	sources;	
(b)	the	complexity	of	transformation;	(c)	the	complexity	of	integration;	and	(d)	the	
availability	of	skill	sets.	Also,	the	same	report	suggests	considering	“one	person	per	
source”	as	a	guide	to	accomplishing	the	ETL	implementation	effectively.
Based	on	the	previous	discussion,	we	can	identify	key	factors	underlying	the	main	
problems of ETL workflows:

•	 Vastness	of	the	data	volumes
•	 Quality	problems,	since	data	are	not	always	clean	and	have	to	be	cleansed
• Performance, since the whole process has to take place within a specific time

window	and	it	is	necessary	to	optimize	its	execution	time
•	 Evolution	of	the	sources	and	the	data	warehouse	can	eventually	lead	to	daily	

maintenance	operations

Visualizing	and	understanding	this	kind	of	system	is	another	issue.	In	fact,	tradi-
tional	modeling	approaches	need	to	be	reconsidered:	we	need	interactive,	multiv-
iew	modeling	frameworks	that	abstract	the	complexity	of	the	system	and	provide	
complementary	views	of	the	system’s	structure	to	the	designer	(apart	from	simply	
providing	the	big	picture,	like	the	traditional	ER/DFD	approaches	did).	Moreover,	
we	need	to	be	able	to	manage	risk	through	our	modeling	artifacts.	For	example,	we	
would	like	to	answer	questions	like:

•	 Which	attributes/tables	are	involved	in	the	population	of	a	certain	attribute?
•	 What	part	of	the	scenario	is	affected	if	we	delete	an	attribute?
• How good is the design of my ETL workflow?
•	 Is	variant	A	better	than	variant	B?

Main.Thrust. of. the.Chapter

In	this	section,	we	identify	the	main	problems	that	arise	during	all	the	phases	of	an	
ETL	process.	Then,	we	propose	a	modeling	approach	for	the	construction	of	ETL	
workflows, which is based on the life cycle of the ETL processes.

Data Warehouse Refreshment ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Problems and Issues of DW Refreshment

In	all	the	phases	of	an	ETL	process	(extraction	and	transportation,	transformation	
and	cleaning,	and	loading),	individual	issues	arise,	making	data	warehouse	refresh-
ment	a	very	troublesome	task.	In	the	sequel,	in	order	to	clarify	the	complexity	and	
the special characteristics of the ETL processes, we briefly review several issues,
problems,	and	constraints	that	turn	up	in	each	phase	separately.	

•	 Global problems and constraints:	Scalzo	(2003)	mentions	that	90%	of	the	
problems	in	data	warehouses	arise	during	the	loading	of	the	data	at	the	nightly	
batch	cycles.	At	this	period,	the	administrators	have	to	deal	with	problems	
such as (a) efficient data loading and (b) concurrent job mixture and depen-
dencies.	Moreover,	ETL	processes	have	global	time	constraints	including	the	
initiation	time	and	their	completion	deadlines.	In	fact,	in	most	cases,	there	is	
a	tight	“time	window”	in	the	night	that	can	be	exploited	for	the	refreshment	
of	the	data	warehouse,	since	the	source	system	is	off-line	or	not	heavily	used	
during	this	period.

	 Consequently,	a	major	problem	arises	with	the	scheduling	of	the	overall	proc-
ess. The administrator has to find the right execution order for dependent jobs
and	job	sets	on	the	existing	hardware	for	the	permitted	time	schedule.	On	the	
other	hand,	if	the	OLTP	applications	cannot	produce	the	necessary	source	data	
in	time	for	processing	before	the	data	warehouse	comes	online,	the	informa-
tion	in	the	data	warehouse	will	be	out	of	date.	Still,	since	data	warehouses	are	
used	for	strategic	purposes,	this	problem	can	sometimes	be	afforded,	due	to	
the	fact	that	long-term	reporting/planning	is	not	severely	affected	by	this	type	
of	failures.

•	 Extraction.and.transportation:.During the ETL process, one of the very first
tasks	that	must	be	performed	is	the	extraction	of	the	relevant	information	that	
has	to	be	further	propagated	to	the	warehouse	(Theodoratos,	Ligoudistianos,	
&	Sellis,	2001).	In	order	to	minimize	the	overall	processing	time,	this	involves	
only	a	fraction	of	the	source	data	that	has	changed	since	the	previous	execution	
of	the	ETL	process,	mainly	concerning	the	newly	inserted	and	possibly	updated	
records.	Usually,	change	detection	is	physically	performed	by	the	comparison	
of	two	snapshots	(one	corresponding	to	the	previous	extraction	and	the	other	
to the current one). Efficient algorithms exist for this task, like the snapshot
differential	algorithms	presented	by	Labio	and	Garcia-Molina	(1996).	Another	
technique is log “sniffing,” that is, the scanning of the log file in order to “re-
construct”	the	changes	performed	since	the	last	scan.	In	rare	cases,	change	
detection	can	be	facilitated	by	the	use	of	triggers.	However,	this	solution	is	
technically	impossible	for	many	of	the	sources	that	are	legacy	systems	(such	
a technique adds an enormous load to the source systems) or plain flat files.

�20 Simitsis, Vassiliadis, Skiadopoulos, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

In	numerous	other	cases,	where	relational	systems	are	used	at	the	source	side,	
the	usage	of	triggers	is	also	prohibitive	both	due	to	the	performance	degrada-
tion	that	their	usage	incurs	and	the	need	to	intervene	in	the	structure	of	the	
database.	Moreover,	another	crucial	issue	concerns	the	transportation	of	data	
after	the	extraction,	where	tasks	like	FTP,	encryption-decryption,	compres-
sion-decompression,	and	so	forth,	can	possibly	take	place.	

•	 Transformation.and.cleaning:	It	is	possible	to	determine	typical	tasks	that	
take	place	during	the	transformation	and	cleaning	phase	of	an	ETL	process.	
Rahm	and	Hai	Do	(2000)	further	detail	this	phase	in	the	following	tasks:	(a)	
data analysis; (b) definition of transformation workflow and mapping rules; (c)
verification; (d) transformation; and (e) backflow of cleaned data. In terms of
the	transformation	tasks,	we	distinguish	two	main	classes	of	problems	(Len-
zerini, 2002): (a) conflicts and problems at the schema level	(e.g.,	naming	and	
structural conflicts) and (b) data level	 transformations	(i.e.,	at	 the	 instance	
level).	The	main	problems	with	respect	to	the	schema	level	are	(a)	naming
conflicts,	where	the	same	name	is	used	for	different	objects	(homonyms)	or	
different	names	are	used	for	the	same	object	(synonyms)	and	(b)	structural
conflicts,	where	one	must	deal	with	different	representations	of	the	same	ob-
ject	in	different	sources.	In	addition,	there	are	a	lot	of	variations	of	data-level	
conflicts across sources: duplicated or contradicting records, different value
representations	(e.g.,	for	marital	status),	different	interpretation	of	the	values	
(e.g.,	measurement	units	dollar	vs.	euro),	different	aggregation	levels	(e.g.,	
sales	per	product	vs.	sales	per	product	group),	or	reference	to	different	points	in	
time	(e.g.,	current	sales	as	of	yesterday	for	a	certain	source	vs.	as	of	last	week	
for	another	source).	The	list	is	enriched	by	low-level	technical	problems	like	
data type conversions, applying format masks, assigning fields to a sequence
number,	substituting	constants,	setting	values	to	NULL	or	DEFAULT	based	on	a	
condition,	or	using	simple	SQL	operators,	for	instance,	UPPER,	TRUNC,	SUB-
STR.	The	integration	and	transformation	programs	perform	a	wide	variety	of	
functions,	such	as	reformatting,	recalculating,	modifying	key	structures,	add-
ing	an	element	of	time,	identifying	default	values,	supplying	logic	to	choose	
between	multiple	sources,	summarizing,	merging	data	from	multiple	sources,	
and	so	forth.	

•	 Loading:.The final loading of the data warehouse has its own technical chal-
lenges.	A	major	problem	is	the	ability	to	discriminate	between	new	and	exist-
ing	data	at	loading	time.	This	problem	arises	when	a	set	of	records	has	to	be	
classified to (a) the new rows that need to be appended to the warehouse and
(b)	rows	that	already	exist	in	the	data	warehouse,	but	their	value	has	changed	
and	must	be	updated	(e.g.,	with	an	UPDATE	command).	Modern	ETL	tools	
already	provide	mechanisms	towards	this	problem,	mostly	through	language	
predicates,	 for	example,	Oracle’s	MERGE	command	(Oracle,	2002).	Also,	

Data Warehouse Refreshment �2�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

simple SQL commands are not sufficient since the open-loop-fetch technique,
where	records	are	inserted	one	by	one,	is	extremely	slow	for	the	vast	volume	
of	data	to	be	loaded	in	the	warehouse.	An	extra	problem	is	the	simultaneous	
usage of the rollback segments and log files during the loading process. The
option	to	turn	them	off	contains	some	risk	in	the	case	of	a	loading	failure.	So	
far,	the	best	technique	seems	to	be	the	usage	of	the	batch	loading	tools	offered	
by	most	RDBMS	that	avoids	these	problems.	Other	techniques	that	facilitate	
the	loading	task	involve	the	creation	of	tables	at	the	same	time	with	the	cre-
ation	of	the	respective	indexes,	the	minimization	of	interprocess	wait	states,	
and	the	maximization	of	concurrent	CPU	usage.	

Research Problems and Challenges

The previous discussion demonstrates the problem of designing an efficient, robust,
and evolvable ETL workflow is relevant and pressing. To be more specific and un-
derstand	the	requirements	of	the	design	and	evolution	of	a	data	warehouse,	we	have	
to clarify how ETL workflows fit in the data warehouse life cycle.
As	we	can	see	in	Figure	2,	the	life	cycle	of	a	data	warehouse	begins	with	an	initial	
reverse	engineering	and	requirements	collection	phase	where	the	data	sources	are	
analyzed	in	order	to	comprehend	their	structure	and	contents.	At	the	same	time,	
any	requirements	on	the	part	of	the	users	(normally	a	few	power	users)	are	also	col-
lected.	The	deliverable	of	this	stage	is	a	conceptual	model	for	the	data	stores	and	the	
processes	involved.	In	a	second	stage,	namely	the	logical	design	of	the	warehouse,	
the	logical	schema	for	the	warehouse	and	the	processes	are	constructed.	Third,	the	
logical design of the schema and processes are optimized and refined to the choice

	

Conceptual
Model for DW,
Sources &
Processes

Logical.Design	
Tuning.–..
Full.Activity.
Description	

Software.
Construction	

Administration.
of.DW	

Reverse. Engineering.
of.Sources.&.
Requirements.
Collection	

Software &
SW Metrics

Physical Model
for DW, Sources
& Processes

Logical Model
for DW, Sources
& Processes

Metrics

Figure 2. The life cycle of a data warehouse and its ETL processes (Vassiliadis,
Simitsis, & Skiadopoulos, 2002a)

�22 Simitsis, Vassiliadis, Skiadopoulos, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

of specific physical structures in the warehouse (e.g., indexes) and environment-
specific execution parameters for the operational processes. We call this stage tun-
ing	and	its	deliverable	is	the	physical	model	of	the	environment.	In	a	fourth	stage,	
software construction, the software is constructed, tested, evaluated, and a first
version of the warehouse is deployed. This process is guided through specific soft-
ware	metrics.	Then,	the	cycle	starts	again,	since	data	sources,	user	requirements,	
and	the	data	warehouse	state	are	under	continuous	evolution.	An	extra	feature	that	
comes	into	the	scene	after	the	deployment	of	the	warehouse	is	the	administration	
task, which also needs specific metrics for the maintenance and monitoring of the
data	warehouse.	Consequently,	in	order	to	achieve	our	goal	we	have	to	deal	with	
the	phases	of	the	life	cycle	of	a	data	warehouse.

•	 Conceptual.model:.A	conceptual	model	for	ETL	processes	deals	with	the	
earliest	stages	of	the	data	warehouse	design.	During	this	period,	the	data	ware-
house	designer	is	concerned	with	two	tasks	which	are	practically	executed	in	
parallel:	(a)	the	collection	of	requirements	from	the	part	of	the	users,	and	(b)	
the	analysis	of	the	structure	and	content	of	the	existing	data	sources	and	their	
intentional	mapping	 to	 the	common	data	warehouse	model.	The	design	of	
an	ETL	process	aims	at	the	production	of	a	crucial	deliverable:	the	mapping	
of	the	attributes	of	the	data	sources	to	the	attributes	of	the	data	warehouse	
tables	through	the	appropriate	intermediate	transformations.	The	production	
of	this	deliverable	involves	several	interviews	that	result	in	the	revision	and	
redefinition of original assumptions and mappings; thus it is imperative that a
simple	conceptual	model	should	be	employed	in	order	to	facilitate	the	smooth	
redefinition and revision efforts and to serve as the means of communication
with	the	rest	of	the	involved	parties.

	 From	our	point	of	view,	a	conceptual	model	for	ETL	processes	shall	not	be	
another process/workflow model for the population of the data warehouse.
There	are	two	basic	reasons	for	this	approach.	First,	in	the	conceptual	model	
for	ETL	processes,	the	focus	is	on	documenting/formalizing	the	particularities	
of	the	data	sources	with	respect	to	the	data	warehouse	and	not	in	providing	
a	technical	solution	for	the	implementation	of	the	process.	Second,	the	ETL	
conceptual	model	 is	 constructed	 in	 the	early	 stages	of	 the	data	warehouse	
project	during	which	the	time	constraints	of	the	project	require	a	quick	docu-
mentation	of	the	involved	data	stores	and	their	relationships,	rather	than	an	
in-depth description of a composite workflow.

•	 Logical.model:.In	the	logical	perspective,	we	classify	the	design	artifacts	that	
describe an abstraction of the workflow environment. First, the designer is
responsible for defining an Execution Plan for the scenario. The definition of
an	execution	plan	can	be	seen	from	various	views.	The	Execution	Sequence	
involves the specification of (a) which process runs first, second, and so on;

Data Warehouse Refreshment �2�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

(b) which processes run in parallel; or (c) when a semaphore is defined so that
several	processes	are	synchronized	at	a	rendezvous	point.	ETL	processes	nor-
mally	run	in	batches,	so	the	designer	needs	to	specify	an	Execution	Schedule,	
that is, the time points or events that trigger the execution of the workflow as
a	whole.	Finally,	due	to	system	crashes,	it	is	imperative	that	a	recovery	plan	
exists,	specifying	the	sequence	of	steps	to	be	taken	in	the	case	of	failure	for	
a	certain	process	(e.g.,	retry	to	execute	the	process,	or	undo	any	intermedi-
ate	results	produced	so	far).	In	the	ETL	case,	due	to	the	data	centric	nature	
of	the	process,	the	designer	must	deal	with	the	relationship	of	the	involved	
processes with the underlying data. This involves the definition of a primary
data flow that describes the route of data from the sources towards their fi-
nal	destination	in	the	data	warehouse,	as	they	pass	through	the	processes	of	
the workflow. Also, due to possible quality problems of the processed data,
the designer is obliged to define a data flow for logical exceptions, which is
responsible for the flow of the problematic data, that is, the rows that violate
integrity	or	business	rules.	Moreover,	a	very	crucial	topic	is	the	semantics	of	
the ETL workflow. These semantics are generated by the combination of the
data flow and the execution sequence: the data flow defines what each process
does and the execution plan defines in which order and combination.

•	 Mapping.conceptual.to.logical.models:	Another	issue	that	has	to	be	solved	
is	 the	 transition	 between	 the	 aforementioned	 phases	 (i.e.,	 conceptual	 and	
logical)	of	the	data	warehouse	life	cycle.	On	one	hand,	there	exists	a	simple	
model, sufficient for the early stages of the data warehouse design. On the
other	hand,	there	exists	a	logical	model	that	offers	formal	and	semantically	
founded	concepts	to	capture	the	particularities	of	an	ETL	process.

	 The	goal	of	this	transition	should	be	to	facilitate	the	integration	of	the	results	
accumulated	in	the	early	phases	of	a	data	warehouse	project	into	the	logical	
model,	such	as	the	collection	of	requirements	from	the	part	of	the	users,	the	
analysis	of	the	structure	and	content	of	the	existing	data	sources,	along	with	
their	intentional	mapping	to	the	common	data	warehouse	model.	The	deliv-
erable	of	this	transition	is	not	expected	to	be	always	a	complete	and	accurate	
logical	design.	The	designer/administrator	in	the	logical	level	should	examine,	
complement,	or	change	the	outcome	of	this	methodology,	in	order	to	achieve	
the	goals.

 In the context of finding an automatic transition from one model to the other,
there	are	several	problems	that	should	be	addressed.	Since	the	conceptual	model	
is	constructed	in	a	more	generic	and	high-level	manner,	each	conceptual	entity	
has	a	mapping	to	a	logical	entity.	Thus,	there	is	a	need	for	the	determination	
of	these	mappings.	Moreover,	we	have	stressed	that	the	conceptual	model	is	
not a workflow as it simply identifies the transformations needed in an ETL
process.	Therefore,	it	does	not	directly	specify	the	execution	order	of	these	

�24 Simitsis, Vassiliadis, Skiadopoulos, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

transformations.	On	the	other	hand,	the	execution	order	is	a	very	important	
property of the logical model. So, there is a necessity for finding a way to
specify	the	execution	order	of	the	transformations	in	an	ETL	process	during	
the	transition	between	the	two	models.	

•	 Optimization of ETL workflows: In order to design an efficient, robust, and
evolvable ETL workflow, we have to optimize its execution plan. In other
words,	we	have	to	optimize	the	sequence	of	the	ETL	operations	involved	in	
the	overall	process.	

	 Up	to	now,	the	research	community	has	confronted	the	problem	of	the	op-
timization of data warehouse refreshment as a problem of finding the opti-
mal strategy for view maintenance. But this is not sufficient with respect to
mechanisms	that	are	employed	in	real-world	settings.	In	fact,	in	real-world	data	
warehouse	environments,	this	procedure	differs	to	the	point	that	the	execu-
tion	of	operational	processes	(which	is	employed	in	order	to	export	data	from	
operational	data	sources,	transform	them	into	the	format	of	the	target	tables,	
and finally, load them to the data warehouse) does not like as a “big” query;
rather	it	is	more	realistic	to	be	considered	a	complex	transaction.	Thus,	there	is	
a	necessity	to	deal	with	this	problem	for	a	different	perspective	by	taking	into	
consideration	the	characteristics	of	an	ETL	process	presented	in	the	previous	
subsection.	One	could	argue	that	we	can	possibly	express	all	ETL	operations	
in	terms	of	relational	algebra	and	then	optimize	the	resulting	expression	as	
usual.	But,	 the	 traditional	 logic-based	algebraic	query	optimization	can	be	
blocked,	basically	due	to	the	existence	of	data	manipulation	functions.

 However, if we study the problem of the optimization of ETL workflows from
its	logical	point	of	view,	we	can	identify	several	interesting	research	problems	
and optimization opportunities. At first, there is a necessity for a framework
that	will	allow	the	application	of	several	well-known	query	optimization	tech-
niques to the optimization of ETL workflows. For example, it is desirable to
push	selections	all	the	way	to	the	sources,	in	order	to	avoid	processing	un-
necessary	rows.	Moreover,	it	is	desirable	to	determine	appropriate	techniques	
and requirements, so that an ETL transformation (e.g., a filter) can be pushed
before	or	after	another	transformation	involving	a	function.	Additionally,	there	
is	a	need	to	tackle	the	problem	of	homonyms.	For	example,	assume	the	case	
of two attributes with the same name, COST, where the first one has values
in	European	currency,	while	the	other	contains	values	in	American	currency.	
Clearly, in this case it is not obvious if a transformation that involves the first
attribute	 (e.g.,	 a	 transformation	 that	converts	 the	values	 from	American	 to	
European	currency)	can	be	pushed	before	or	after	another	transformation	that	
involves the second attribute (e.g., a transformation that filters the values over
a	certain	threshold).

Data Warehouse Refreshment �2�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

•	 Software.construction:	To	conclude	the	discussion	about	the	life	cycle	of	
the	data	warehouse	presented	in	Figure	2,	one	anticipates	that	the	outcome	
of	the	aforementioned	analysis	should	be	used	for	the	construction	of	a	soft-
ware	prototype.	This	construction	phase	includes	the	development,	testing,	
and deployment of a first version of the data warehouse. This process has to
be guided through specific metrics for the maintenance and monitoring of the
data	warehouse.

A Roadmap for a Data Warehouse Designer/Administrator

We	summarize	 the	previously	mentioned	 issues	 in	Table	1,	where	we	present	a	
set	of	steps	for	the	data	warehouse	designers	towards	constructing	the	backstage	
of	the	data	warehouse.	We	organize	the	tasks	of	the	designers	in	four	phases	(re-
quirements,	design,	tuning,	and	implementation)	of	the	software	project.	For	each	

Extract Transform Load Deliverable

Phase.1a:.
Reverse	
Engineering	
of	Sources	&	
Requirements	
Collection

	collection	of	
requirements	from	
the	part	of	the	users

	analysis	of	the	
structure	and	content	
of	the	existing	data	
sources	and	their	
intentional	mapping	
to	the	common	data	
warehouse	model

	mapping	of	the	
attributes	of	the	
data	sources	to	the	
attributes	of	the	
data	warehouse	
tables	through	
the	appropriate	
intermediate	
transformations

	identification of
data	targets

	conceptual	
schema

Phase 1b:
Define
Sources	and	
Processes

	concepts	map	to	
logical	recordsets

	transformations	map	
to	logical	activities

	definition of a proper
execution	order

	concepts	map	
to	logical	
recordsets

	ETL	constraints	
map	to	logical	
activities

	a	set	of	
steps	
for	the	
transition	
of	
conceptual	
to	logical	
schemas

Phase.2:
Logical	
Design

	definition of a plan
for	the	population	
of	the	Data	Staging	
Area	w.r.t.	schemata	
mappings	

	choice	of	extraction	
policy:	incremental	
or	full	extraction

	description	of	ETL	
activities	w.r.t.	
schemata	mappings	
and	internal	
semantics

	identification of an
optimal	execution	
plan

	appropriate	
schemata	
mappings

	logical	
schema

Table 1. Typical tasks for a data warehouse designer/developer organized by phase
and stage

�26 Simitsis, Vassiliadis, Skiadopoulos, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

phase,	we	present	the	issues	and	the	steps	to	follow	concerning	the	main	tasks	of	
the	warehouse	architecture	(extraction,	transformation,	cleaning).	The	fundamental	
deliverable	that	guides	this	process	is	also	listed.

Arktos.II:.A.Framework.towards.the.Modeling.and.the...
Optimization of ETL Workflows

In this subsection, we present a framework for traditional data warehouse flows,
named	Arktos	II,	as	an	exemplary	ETL	modeling	methodology	that	follows	the	life	
cycle of a data warehouse as we previously presented it. Below, we briefly pres-
ent	the	main	contributions	of	Arktos	II,	grouped	by	the	phases	of	the	life	cycle	of	
a	data	warehouse.
Arktos	II	(Simitsis,	Vassiliadis,	&	Sellis,	2005a;	Vassiliadis,	Simitsis,	Georgantas,	
Terrovitis,	&	Skiadopoulos,	2005)	is	a	framework	that	studies	the	design,	develop-
ment, and optimization of ETL workflows. The uttermost goal of this framework
is	to	facilitate,	manage,	and	optimize	the	design	and	implementation	of	the	ETL	
workflows during the initial design and deployment stage and during the continuous
evolution	of	the	data	warehouse.	Despite	the	fact	that	its	prototype	is	only	a	design	
environment, at least for the moment, it benefits compared to the commercial ETL
tools	due	to	the	logical	abstraction	that	it	offers;	on	the	contrary,	commercial	tools	
are	concerned	directly	with	the	physical	perspective	of	an	ETL	scenario	(at	least	to	
the	best	of	our	knowledge).
Arktos	II	proposes	a	novel	conceptual	model	for	the	early	stages	of	a	data	warehouse	
project	(Vassiliadis,	Simitsis,	&	Skiadopoulos,	2002).	This	model	focuses	on	(a)	
the	interrelationships	of	attributes	and	concepts	and	(b)	the	necessary	transforma-
tions	that	need	to	take	place	during	the	loading	of	the	warehouse.	Also,	it	is	able	to	
capture	constraints	and	transformation	composition.	Due	to	the	nature	of	the	design	
process,	the	features	of	the	conceptual	model	are	presented	in	a	set	of	design	steps	
that	constitute	a	methodology	for	the	design	of	the	conceptual	part	of	the	overall	
ETL	process.	The	construction	of	the	model	is	realized	in	a	customizable	and	ex-
tensible	manner,	so	that	the	designer	can	enrich	it	with	the	designer’s	own	reoccur-
ring	patterns	for	ETL	transformations.	Furthermore,	it	is	enriched	with	a	“palette”	
of	frequently	used	ETL	transformations,	like	the	assignment	of	surrogate	keys,	the	
check	for	null	values,	and	so	on.
Additionally,	Arktos	II	presents	a	formal	logical	model	for	the	ETL	environment	
that concentrates on the flow of data from the sources towards the data warehouse
through	the	composition	of	activities	and	data	stores	(Vassiliadis	et	al.,	2002).	The	
flow of data from producers towards their consumers is achieved through the usage
of	provider	relationships	that	map	the	attributes	of	the	former	to	the	respective	at-
tributes	of	the	latter.	A	serializable	combination	of	ETL	activities,	provider	relation-

Data Warehouse Refreshment �2�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

ships, and data stores constitutes an ETL workflow. Also, a reusability framework
that	complements	the	genericity	and	customization	of	the	metamodel	is	provided.	
Finally, Arktos II introduces techniques for the measurement of ETL workflows.
Furthermore,	Arktos	 II	 proposes	 a	 semiautomatic	 transition	 from	 conceptual	 to	
logical	model	for	ETL	processes	(Simitsis,	2005).	The	constituents	of	the	concep-
tual	model	are	mapped	to	their	respective	constituents	of	the	logical	model.	Also,	it	
presents	a	method	for	the	determination	of	a	correct	execution	order	of	the	activi-
ties	in	the	logical	model,	wherever	feasible,	by	grouping	the	transformations	of	the	
conceptual	design	into	stages.	
Moreover, Arktos II delves into the logical optimization of ETL workflows, having
as its uttermost goal the finding of the optimal ETL workflow (Simitsis, Vassiliadis,
&	Sellis,	2005).	The	method	proposed	reduces	the	execution	cost	of	an	ETL	work-
flow, by changing either the total number or the execution order of the processes.
The	problem	is	modeled	as	a	state	space	search	problem,	with	each	state	represent-
ing a particular design of the workflow as a graph. The tuning of an ETL workflow
is	realized	through	several	algorithms	for	the	optimization	of	the	execution	order	
of	the	activities.
Finally,	to	replenish	the	aforementioned	issues,	an	ETL	tool	has	prototypically	been	
implemented	with	the	goal	of	facilitating	the	design,	the	(re)use,	and	the	optimiza-
tion of ETL workflows. The general architecture of Arktos II comprises a GUI, an
ETL	library,	a	metadata	repository,	and	an	optimizer	engine.	The	GUI	facilitates	
the design of ETL workflows in both the conceptual and logical level, through a
workflow editor and a template palette. The ETL library contains template code of
built-in functions and maintains a template code of user-defined functions. After its
creation, the ETL workflow is propagated to the optimizer in order to achieve a bet-
ter	version	with	respect	to	the	execution	time.	All	the	aforementioned	components	
are	communicating	with	each	other	through	the	metadata	repository.

Future.Trends

In	our	opinion,	there	are	several	issues	that	are	technologically	open	and	present	
interesting topics of research for the future in the field of data integration in data
warehouse	environments.	This	opinion	is	supported	by	the	results	of	a	recent	work-
shop	located	in	Dagstuhl,	Germany	in	the	Summer	of	2004	(Dagstuhl	Perspective	
Workshop,	2004),	where	several	researchers	tried	to	articulate	the	most	pressing	
issues	for	the	next	directions	of	data	warehousing	research.	A	research	agenda	de-
scribing	opportunities	and	challenges	for	promising	new	areas	in	data	warehousing	
research	was	proposed	that	focuses	on	architecture,	processes,	modeling	and	design,	
and	novel	applications.	Out	of	these,	the	participants	discuss	the	future	role	of	ETL	

�28 Simitsis, Vassiliadis, Skiadopoulos, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

in	a	threefold	categorization:	traditional	ETL,	stream	ETL,	and	on-demand	ETL.	
We adopt this classification, and for each one of these categories, we present a list
of	several	future	directions.	

•	 Traditional.ETL: Traditional	ETL	processes	are	responsible	for	the	extrac-
tion	of	data	from	several	sources,	their	cleansing,	customization,	and	insertion	
into	a	data	warehouse.	These	tasks	are	repeated	on	a	regular	basis,	and	in	most	
cases,	they	are	asynchronous.	As	research	challenges	in	this	area,	we	mention	
the	following	issues:
	 A	formal	description	of	ETL	processes	with	particular	emphasis	on	an	

algebra	(for	optimization	purposes)	and	a	formal	declarative	language.
	 The	 optimization	 of	ETL	 processes	 on	 logical	 and	 physical	 levels.	A	

challenge	will	be	either	the	optimization	of	the	whole	ETL	process	or	of	
any	individual	transformation.	Parallel	processing	of	ETL	processes	is	
of	particular	importance.

	 The	propagation	of	changes	back	to	the	sources.	Potential	quality	problems	
observed	at	the	end-user	level	can	lead	to	clean	data	being	propagated	
back	to	the	sources,	in	order	to	avoid	the	repetition	of	several	tasks	in	
future	application	of	the	ETL	process.	Clearly,	this	idea	has	already	been	
mentioned in the literature as “backflow of cleaned data” (Rahm & Hai
Do,	2000),	but	the	problem	is	not	solved	yet.

	 The	provision	of	standard-based	metadata	for	ETL	processes.	There	does	
not	exist	common	model	for	the	metadata	of	ETL	processes.	CWM	is	
not sufficient for this purpose and it is too complicated for real-world
applications.

	 The	integration	of	ETL	with	XML	adapters,	EAI	(Enterprise	Application	
Integration)	tools	(e.g.,	MQ-Series),	and	data	quality	tools.

	 The	extension	of	the	ETL	mechanisms	for	nontraditional	data,	like	XML/
HTML,	spatial,	and	biomedical	data.

	 The	treatment	of	security	issues	in	ETL;	source	data	and	data	in	transit	
are	security	risks	(Friedman,	2002a).

•	 Stream.ETL: Streams are sequences of data, continuously flowing from a data
source	with	the	particular	characteristic	that,	due	to	their	volume,	each	tuple	
is	available	only	for	a	limited	time	window	for	querying.	Stream	examples	
would	involve	stock	rates	extracted	from	the	Web,	packets	going	through	a	
router,	clickstreams	from	a	Web	site,	and	so	 forth.	Stream	ETL	is	an	ETL	
process involving the possible filtering, value conversion, and transforma-
tions	of	this	incoming	information	in	a	relational	format.	Although,	streams	
cannot	be	stored,	some	patterns	or	snapshot	aggregates	of	them	can	be	stored	

Data Warehouse Refreshment �2�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

for	subsequent	querying.	As	research	challenges	in	this	area,	we	can	mention	
the	following	issues:
	 The	necessity	of	maintaining	data	in	the	DW	as	much	“online”	as	we	can,	

but	without	adding	an	extra	load	to	sources	or	DW.
	 The	provision	of	correctness	guarantees.
	 The	necessity	of	cost	models	for	the	tuning	of	the	incoming	stream	within	

specified time window.
	 The	audit	of	the	incoming	stream	data	for	several	constraints	or	business	

rules,	also	with	respect	to	stored	data	(e.g.,	primary	key	violations).
•	 On-Demand.ETL:.An	ETL	process	of	 this	kind	 is	executed	sporadically,	

and	it	is	manually	initiated	by	some	user	demand.	The	process	is	responsible	
for	retrieving	external	data	and	loading	them	in	the	DW	after	the	appropriate	
transformations.	For	instance,	consider	the	case	that	some	users	request	data	
to	be	brought	in	from	the	Web.	The	administrator/programmer	is	assigned	the	
task of constructing an ETL process that extracts the dates from the specified
sites,	transforms	them,	and	ultimately	stores	them	in	some	(possibly	novel)	
part	of	the	warehouse.	Any	time	the	user	needs	this	data,	this	on-demand	ETL	
process	brings	in	the	relevant	information.	As	research	challenges	in	this	area,	
we	mention	the	following	issues:
	 The	need	for	appropriate	operators,	since	this	process	is	mostly	focused	

towards	Web	data.
	 The	computation	of	minimum	effort/time/resources	for	the	construction	

of	the	process.
	 The	provision	of	a	framework	easily	adaptable	to	the	changes	of	the	ex-

ternal	data.
 The finding of efficient algorithms, due to the fact that this process is

initiated	by	the	user.

Conclusion

In	this	chapter,	we	have	delved	into	a	crucial	part	of	the	data	warehouse	architecture:	
the	backstage	area.	We	have	presented	the	state	of	the	art	concerning	the	existing	
ETL	technology.	In	practice,	a	designer/administrator	uses	a	commercial	ETL	tool	
or an in-house developed software artifact to create ad-hoc ETL workflows. We
have stressed the fact that there is not a unified approach that concretely deals with
the modeling and the optimization of ETL workflows.

��0 Simitsis, Vassiliadis, Skiadopoulos, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Additionally,	we	have	indicated	the	main	challenges	and	problems	concerning	the	
manufacturing of ETL workflows. In all the phases of an ETL process (extraction
and	 transportation,	 transformation	 and	 cleaning,	 and	 loading)	 individual	 issues	
arise,	making	data	warehouse	refreshment	a	very	troublesome	task.	In	general,	ETL	
workflows are characterized as quite complex, costly, critical, and important for the
success	of	a	data	warehouse	project.	The	key	factors	underlying	the	main	problems	
of ETL workflows are vastness of the data volumes, quality problems, performance,
evolution	of	the	sources,	and	the	data	warehouse.
Moreover,	we	have	presented	a	modeling	approach	for	 the	construction	of	ETL	
workflows, which is based on the life cycle of the ETL processes. This life cycle
consist	 of	 four	phases:	 reverse	 engineering	and	 requirements	 collection,	 logical	
design,	tuning	and	physical	design,	and	software	construction.	As	a	result,	in	order	
to construct an efficient, robust, and evolvable ETL workflow, we have to deal with
all	the	phases	of	the	life	cycle	of	a	data	warehouse.
Finally,	we	have	pointed	out	a	list	of	open	research	issues	arranged	in	three	basic	
categories:	traditional	ETL,	stream	ETL,	and	on-demand	ETL;	and	we	have	pro-
vided	several	future	directions.

References

Adzic,	J.,	&	Fiore,	V.	(2003,	September).	Data	warehouse	population	platform.	In	
Proceedings of 5th International Workshop on the Design and Management
of Data Warehouses (DMDW’03),	Berlin,	Germany.

Ascential.	(2003).	Data warehousing technology.	Retrieved	May	27,	2006,	from	
http://www.ascentialsoftware.com/products/datastage.html

Booch,	G.,	Rumbaugh,	J.,	&	Jacobson,	I.	(1998).	The unified modeling language
user guide.	Addison-Wesley.

Borkar,	V.,	Deshmuk,	K.,	&	Sarawagi,	S.	(2000).	Automatically	extracting	struc-
ture	from	free	text	addresses.	Bulletin of the Technical Committee on Data
Engineering, 23(4).

Bouzeghoub,	M.,	Fabret,	F.,	&	Matulovic,	M.	(1999).	Modeling	data	warehouse	re-
freshment process as a workflow application. In Proceedings of 1st International
Workshop on the Design and Management of Data Warehouses (DMDW’99),	
Heidelberg,	Germany.

Calì,	A.,	Calvanese,	D.,	De	Giacomo,	G.,	Lenzerini,	M.,	Naggar,	P.,	&	Vernacoto-
la,	F.	(2003).	IBIS:	Semantic	data	integration	at	work.	In	Proceedings of the
15th International Conference on Advanced Information Systems Engineering
(CAiSE 2003),	Klangefurt,	Austria	(pp.	79-94).

Data Warehouse Refreshment ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Cohen,	W.	(1999).	Some	practical	observations	on	integration	of	Web	information.	
In	Proceedings of SIGMOD Workshop on the Web and Databases (WebDB’99),	
Philadelphia,	Pennsylvania.

Dagstuhl	 Perspective	 Workshop.	 (2004).	 Data warehousing at the crossroads.	
Dagstuhl,	Germany.

Demarest,	M.	(1999).	The politics of data warehousing.	Retrieved	May	27,	2006,	
from	http://www.hevanet.com/demarest/marc/dwpol.html

Eder, J., & Gruber, W. (2002). A meta model for structured workflows supporting
workflow transformations. In Proceedings of the 6th East European Conference
on Advances in Databases and Information Systems (ADBIS’02),	Bratislava,	
Slovakia	(pp.	326-339).

Friedman,	T.	(2002).	Reducing the cost of ETL for the data warehouse (Tech.	Rep.	
No.	COM-16-8237).	Gartner	Group.

Friedman,	T.	(2002a).	Security issues in ETL for the data warehouse	(Tech.	Rep.	
No.	COM-17-8459).	Gartner	Group.

Galhardas,	H.,	Florescu,	D.,	Shasha,	D.,	&	Simon,	E.	(1999).	An extensible frame-
work for data cleaning	(Tech.	Rep.	No.	INRIA	RR-3742).

Galhardas,	H.,	Florescu,	D.,	Shasha,	D.,	&	Simon,	E.	(2000).	Ajax:	An	extensible	
data	cleaning	tool.	In	Proceedings of ACM International Conference on the
Management of Data (SIGMOD’00),	Dallas,	Texas	(p.	590).

Gartner.	(2003).	ETL Magic Quadrant update: Market pressure increases	(Gartner’s	
Strategic	Data	Management	Research	Note	M-19-1108).	Author.

Giga.	(2002).	Market overview update: ETL (Tech.	Rep.	No.	RPA-032002-00021).	
Author.

IBM.	(2003).	IBM Data Warehouse Manager.	Retrieved	May	27,	2006,	from	http://
www-3.ibm.com/software/data/db2/datawarehouse

Informatica.	(2003).	PowerCenter.	Retrieved	May	27,	2006,	from	http://www.in-
formatica.com/products/data+integration/powercenter/default.htm

Jarke,	M.,	Lenzerini,	M.,	Vassiliou,	Y.,	&	Vassiliadis,	P.	(Eds.).	(2003).	Fundamen-
tals of data warehouses	(2nd	ed.).	Germany:	Springer-Verlag.

Jarke,	M.,	List,	T.,	&	Koller,	J.	(2000).	The	challenge	of	process	warehousing.	In	
Proceedings of the 26th International Conference on Very Large Databases
(VLDB’00),	Cairo,	Egypt.

Jarke,	M.,	Quix,	C.,	Blees,	G.,	Lehmann,	D.,	Michalk,	G.,	&	Stierl,	S.	(1999).	Im-
proving	OLTP	data	quality	using	data	warehouse	mechanisms.	In	Proceedings
of ACM International Conference on Management of Data (SIGMOD’99),	
Philadelphia	(pp.	537-538).

��2 Simitsis, Vassiliadis, Skiadopoulos, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Labio, W., & Garcia-Molina, H. (1996). Efficient snapshot differential algorithms
for	data	warehousing.	In	Proceedings of the 22nd International Conference on
Very Large Data Bases (VLDB’96),	Bombay,	India	(pp.	63-74).

Kiepuszewski,	B.,	Ter	Hofstede,	A.	H.	M.,	&	Bussler,	C.	 (2000).	On	structured	
workflow modeling. In Proceedings of the 12th International Conference on
Advanced Information Systems Engineering (CAiSE’00),	Stockholm,	Sweden	
(pp.	431-445).

Lenzerini.	(2002).	Data	integration:	A	theoretical	perspective.	In	Proceedings of
the 21st Symposium on Principles of Database Systems (PODS’02),	Wiscon-
sin	(pp.	233-246).

Microsoft.	(2003).	Data transformation services.	Retrieved	May	27,	2006,	from	
http://www.microsoft.com

Monge,	A.	(2000).	Matching	algorithms	within	a	duplicate	detection	system.	Bul-
letin of the Technical Committee on Data Engineering, 23(4).

Oracle.	(2001).	Oracle9i™	Warehouse	Builder	user’s	guide	(Release	9.0.2).	Retrieved	
May	27,	2006,	from	http://otn.oracle.com/products/warehouse/content.html

Oracle.	(2002).	Oracle9i™ SQL reference	(Release	9.2,	pp.	17.77-17.80).	Author.
Rahm,	E.,	&	Hai	Do,	H.	(2000).	Data	cleaning:	Problems	and	current	approaches.	

Bulletin of the Technical Committee on Data Engineering, 23(4).
Raman,	V.,	&	Hellerstein,	J.	(2001).	Potter’s	Wheel:	An	interactive	data	cleaning	

system.	In	Proceedings of 27th International Conference on Very Large Data
Bases (VLDB’01),	Roma,	Italy	(pp.	381-390).

Rundensteiner,	E.	(Ed.).	(1999).	Special	issue	on	data	transformations.	Bulletin of
the Technical Committee on Data Engineering, 22(1).

Sadiq,	W.,	&	Orlowska,	M.	E.	(2000).	On	business	process	model	transformations.	
In	Proceedings of the 19th International Conference on Conceptual Modeling
(ER’00)	(pp.	267-280),	Salt	Lake	City,	Utah.

Sarawagi,	 S.	 (2000,	December).	 Special	 issue	 on	 data	 cleaning.	 Bulletin of the
Technical Committee on Data Engineering, 23(4).

Scalzo,	B.	(2003).	Oracle DBA guide to data warehousing and star schemas.	Pren-
tice	Hall.

Schafer,	E.,	Becker,	J.-D.,	&	Jarke,	M.	(2000).	DB-Prism:	Integrated	data	warehouses	
and	knowledge	networks	for	bank	controlling.	In	Proceedings of the 26th In-
ternational Conference on Very Large Databases	(VLDB’00), Cairo,	Egypt.

Shilakes,	C.,	&	Tylman,	J.	(1998).	Enterprise	information	portals.	Retrieved	May	27,	
2006,	from	http://www.sagemaker.com/company/downloads/eip/indepth.pdf

Simitsis,	A.	(2004).	Modeling and optimization of extraction-transformation-load-
ing (ETL) processes in data warehouse environments.	Doctoral	Thesis,	NTU	
Athens,	Greece.

Data Warehouse Refreshment ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Simitsis,	A.	(2005).	Mapping	conceptual	to	logical	models	for	ETL	processes.	In	
Proceedings of the 8th ACM International Workshop on Data Warehousing
and OLAP (DOLAP ’05),	Bremen,	Germany.

Simitsis,	A.,	Vassiliadis,	P.,	&	Sellis,	T.	(2005).	Optimizing	ETL	processes	in	data	
warehouse	environments.	In	Proceedings of the 21st IEEE International Con-
ference on Data Engineering (ICDE ’05),	Tokyo,	Japan.

Simitsis,	A.,	Vassiliadis,	P.,	&	Sellis,	T.	(2005a).	State-space	optimization	of	ETL	
workflows. IEEE Transactions on Knowledge and Data Engineering, 17(10),	
1404-1419.

Strange,	K.	(2002).	ETL was the key to this data warehouse’s success	(Tech.	Rep.	
No.	CS-15-3143).	Gartner	Group.

Strange,	K.	(2002a).	Data warehouse TCO: Don’t underestimate the cost of ETL	
(Tech.	Rep.	No.	DF-15-2007).	Gartner	Group.

Theodoratos,	D.,	Ligoudistianos,	S.,	&	Sellis,	T.	 (2001).	View	selection	 for	de-
signing	the	global	data	warehouse.	Data & Knowledge Engineering, 39(3),	
219-240.

Trujillo,	J.,	&	Luján-Mora,	S.	(2003).	A	UML	based	approach	for	modeling	ETL	
processes	in	data	warehouses.	In	Proceedings of 22nd International Conference
on Conceptual Modeling (ER 2003),	Chicago	(pp.	307-320).	LNCS,	2813.

Van	der	Aalst,	W.	M.	P.,	ter	Hofstede,	A.	H.	M.,	Kiepuszewski,	B.,	&	Barros,	A.	P.	
(2000).	Workflow patterns	(BETA	Working	Paper	Series	WP	47).	Eindhoven	
University	of	Technology,	Eindhoven.	

Vassiliadis,	P.	(2000).	Gulliver	in	the	land	of	data	warehousing:	Practical	experi-
ences	and	observations	of	a	researcher.	In	Proceedings of 2nd International
Workshop on Design and Management of Data Warehouses (DMDW’00),	
Stockholm,	Sweden.

Vassiliadis,	P.,	Quix,	C.,	Vassiliou,	Y.,	&	Jarke,	M.	(2001).	Data	warehouse	process	
management.	Information Systems, 26(3),	205-236.

Vassiliadis,	P.,	Simitsis,	A.,	Georgantas,	P.,	Terrovitis,	M.,	&	Skiadopoulos,	S.	(2005).	
A	generic	and	customizable	framework	for	the	design	of	ETL	scenarios.	In-
formation Systems, 30(7),	492-525.

Vassiliadis,	P.,	Simitsis,	A.,	&	Skiadopoulos,	S.	(2002).	Conceptual	modeling	for	
ETL	processes.	In	Proceedings of the 5th ACM International Workshop on Data
Warehousing and OLAP	(DOLAP ’02),	McLean,	Virginia.

Vassiliadis,	P.,	Simitsis,	A.,	&	Skiadopoulos,	S.	(2002a).	Modeling	ETL	activities	
as	graphs.	In	Proceedings of the 4th International Workshop on the Design
and Management of Data Warehouses (DMDW ’02),	Toronto,	Canada	(pp.	
52-61).

��4 Simitsis, Vassiliadis, Skiadopoulos, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Workflow Management Coalition. (1998). Interface 1: Process definition interchange
process model	(Doc.	No.	WfMC	TC-1016-P).	

Data Warehouse Refreshment ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Section III

Efficiency of
Analytical	Processing

��6 Karayannidis, Tsois, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Chapter.VI

Advanced.Ad.Hoc.Star.
Query.Processing

Nikos Karayannidis
National Technical University of Athens, Greece

Aris Tsois
National Technical University of Athens, Greece

Timos Sellis
National Technical University of Athens, Greece

Abstract

Star queries are the most prevalent kind of queries in data warehousing, online
analytical processing (OLAP), and business intelligence applications. Thus, there
is an imperative need for efficiently processing star queries. To this end, a new class
of fact table organizations has emerged that exploits path-based surrogate keys in
order to hierarchically cluster the fact table data of a star schema. In the context
of these new organizations, star query processing changes radically. In this chap-
ter, we present a complete abstract processing plan that captures all the necessary
steps in evaluating such queries over hierarchically clustered fact tables. Further-
more, we realize the abstract operations in terms of physical operations over the
CUBE File data structure. Finally we discuss star query optimization issues over
the presented abstract plan.

Advanced Ad Hoc Star Query Processing ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Introduction.

Star	queries	are	 the	most	prevalent	kind	of	queries	 in	data	warehousing,	online	
analytical	processing	(OLAP),	and	business	intelligence	applications.	Star	queries	
impose restrictions on the dimension tables that are used for selecting specific
facts	from	the	fact	table;	these	facts	are	further	grouped	and	aggregated	accord-
ing	to	the	user	demands.	Furthermore,	advanced	decision	support	calls	for	ad hoc
analysis, in contrast to using predefined reports that are constructed periodically,
or	have	already	been	precomputed.	The	foundation	for	this	kind	of	analysis	is	the	
support	of	ad hoc star queries, which comprise the real essence of OLAP. Efficient
processing of ad hoc star queries is a very difficult task considering, on one hand,
the	native	complexity	of	typical	OLAP	queries,	which	potentially	combine	huge	
amounts	of	data,	and	on	the	other,	the	fact	that	no	a	priori	knowledge	for	the	query	
exists and thus no precomputation of results or other query-specific tuning can be
exploited.	The	only	way	to	evaluate	these	queries	is	to	access	directly	the	base	data	
in an efficient way.
Traditionally,	the	major	bottleneck	in	evaluating	star	queries	has	been	the	join	of	
the	central	(and	usually	very	large)	fact	table	with	the	surrounding	dimension	tables	
(also	known	as	a	star join).	To	cope	with	this	problem	various	indexing	schemes	
have	been	developed	(Chan	&	Ioannidis,	1998;	O’Neil	&	Grafe,	1995;	O’Neil	&	
Quass,	1997;	Sarawagi,	1997;	Wu	&	Buchmann,	1998).	Also	precomputation	of	
aggregation	results	has	been	studied	extensively—mainly	as	a	view	maintenance	
problem—and	is	used	as	a	means	of	accelerating	query	performance	in	data	ware-
houses	(Roussopoulos,	1998;	Srivastava,	Dar,	Jagadish	&	Levy,	1996).
However,	for	ad	hoc	star	queries	the	usage	of	precomputed	aggregation	results	is	
extremely	limited	or	even	impossible	in	some	cases.	Even	when	elaborate	indexes	
are	used,	due	to	the	arbitrary	ordering	of	the	fact	table	tuples,	there	might	be	as	
many	disk	page	accesses	as	are	the	tuples	resulting	from	the	fact	table.	The	only	
alternative	one	can	have	for	such	queries	is	a	good	physical	clustering	of	the	data,	
and	it	is	exactly	for	this	reason	that	a	new	class	of	primary	organizations	for	the	
fact	table	has	emerged	(Karayannidis,	Sellis,	&	Kouvaras,	2004;	Markl,	Ramsak,	
&	Bayern,	1999).		These	organizations	exploit	a	special	kind	of	key	that	is	based	on	
the	hierarchy	paths	of	the	dimensions,	in	order	to	achieve	hierarchical	clustering	of	
the	facts.	This	physical	clustering	results	in	a	reduced	I/O	cost	for	the	majority	of	
star	queries,	which	are	based	on	the	dimension	hierarchies.	Moreover,	in	a	dimen-
sional	data	warehouse	it	is	natural	to	exploit	a	multidimensional	index	for	storing	
the	tuples.	A	typical	star	 join	is	 transformed	then	into	a	multidimensional	range	
query, which is very efficiently computed using the underlying multidimensional
data	structures.	The	combination	of	the	two:	hierarchical	clustering	of	data	and	a	
multidimensional	structure	for	accessing	the	fact	table	tuples	results	in	a	very	ef-
ficient method for ad hoc star query processing.

��8 Karayannidis, Tsois, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

In	this	chapter,	we	discuss	the	processing	of	ad	hoc	star	queries	over	hierarchically	
clustered	fact	tables.	In	particular,	we	present	a	complete	abstract	processing	plan	
that	covers	all	the	necessary	steps	for	answering	such	queries.	This	plan	directly	
exploits the benefits of hierarchically clustered fact tables and opens the road for
new	optimization	challenges.	Then	we	proceed	in	realizing	this	abstract	plan	for	the	
case	of	a	multidimensional	storage	structure	that	achieves	hierarchical	clustering,	
namely	the	CUBE File.	We	continue	with	a	discussion	on	star	query	optimization	
for	the	presented	abstract	plan	and	present	the	hierarchical pregrouping transfor-
mation.	This	 is	 a	very	elegant	 transformation	 that	 exploits	dimension	hierarchy	
semantics to speed up query processing significantly. Finally, we conclude with a
discussion	on	main	conclusions	of	the	presented	methods,	and	future	trends	in	star	
query	processing.

Background.

Preliminary.Concepts..

In	a	relational	OLAP	(ROLAP)	implementation,	a	dimension	is	stored	into	one	or	
more	dimension tables, each	having	a	set	of	attributes.	Dimension	attributes	usually	
form one or more classification hierarchies. For example, the h1 attribute is classified
by	the	h2 attribute, which is further classified by the h3	attribute,	and	so	forth.	We	
call	the	attributes	h1,	h2,	h3,	…	hierarchical attributes	because	they	participate	in	the	
definition of the hierarchy. For example, day,	month,	and	year	can	be	a	hierarchical	
classification in the DATE	dimension.	For	the	purposes	of	this	chapter	we	will	as-
sume	a	single	hierarchy	for	each	dimension.1	A	dimension	table	may	also	contain	
one	or	more	feature attributes f. Feature	attributes	contain	additional	information	
about	a	number	of	hierarchical	attributes	and	are	always	functionally	dependent	on	
one	(or	more)	hierarchical	attribute.	For	example,	population	could	be	a	feature	at-
tribute	dependent	on	the	region	attribute	of	dimension	LOCATION.
Measures	(or	facts)	are	stored	in	fact tables.	A	fact	table	may	contain	one	or	more	
measure	attributes	and	is	always	linked	(by	foreign	key	attributes)	to	some	dimen-
sion	tables.	This	logical	organization	consisting	of	a	central	table	(the	fact	table)	and	
surrounding	tables	(the	dimension	tables)	that	link	to	it	through	1:N	relationships	
is	known	as	the	star schema	(Chaudhuri	&	Dayal,	1997).	In	a	typical	scenario,	the	
hierarchical	attribute	representing	the	most	detailed	level	will	be	the	primary	key	
of	the	respective	dimension.	Each	such	attribute	will	have	a	corresponding	foreign	
key	in	the	fact	table.
In Figure 1(a) we depict an example schema of a simplified data warehouse. The
data	warehouse	stores	sales	 transactions	recorded	per	 item,	store,	customer,	and	

Advanced Ad Hoc Star Query Processing ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

date.	It	contains	one	fact	table	SALES_FACT, which is defined over the dimensions:
PRODUCT,	CUSTOMER,	DATE,	and	LOCATION	with	the	obvious	meanings.	The	
single	measure	of	SALES_FACT	is	sales	representing	the	sales	value	for	an	item	
bought by a customer at a store on a specific day. The dimension hierarchies are
depicted	in	Figure	1(b).
The	dimension	DATE	is	organized	in	three	levels:	Day-Month-Year.	Hence,	it	has	
three	hierarchical	attributes	(Day, Month, Year).	The	PRODUCT	dimension	is	or-
ganized	into	three	levels	(Item-Class-Category)	with	three	hierarchical	attributes	
and	one	feature	attribute	(Brand).	The	dimension	CUSTOMER	is	organized	in	only	
two	levels	(Customer-Profession)	with	two	hierarchical	attributes	and	two	feature	
attributes	(Name, Address).	The	LOCATION	dimension	is	organized	into	three	lev-
els:	store-area-region,	meaning	that	stores	are	grouped	into	geographical	areas	and	
the	areas	are	grouped	into	regions.	For	each	area,	the	population	is	stored	as	feature	
attribute.	Therefore,	the	dimension	has	three	hierarchical	attributes	(Store_id, Area,
Region)	and	one	feature	attribute	(Population)	that	is	assigned	to	the	Area	level.
Note	 that	 the	 key	 attributes	 of	 the	 dimension	 tables	 are	 Customer_id,	 Item_id,	
Store_id,	and	Day	and	the	corresponding	foreign	keys	(Customer_id, Product_id,
Store_id, Day) define the fact table’s primary key.
In	order	to	create	a	fact	table	that	is	clustered	according	to	the	dimension	hierar-
chies we first need to apply a hierarchical encoding	(HE)	on	each	dimension	table.	
To	achieve	this	we	use	the	hierarchical surrogate key	(or	h-surrogate)	attribute,	a	
special attribute which is defined for each dimension table. The value of this attri-
bute	is	computed	based	on	the	value	of	the	hierarchical	attributes	of	the	dimension.	
The	h-surrogate	encodes	not	only	the	values	of	the	hierarchical	attributes	but	also	
the hierarchical relationships defined among the levels of the dimension. Although
there are several equivalent ways to define such an encoding, it is sufficient to pres-
ent	only	one	such	technique	for	the	reader	to	understand	how	h-surrogates	are	used.	
All	the	query	processing	and	optimization	techniques	presented	in	this	chapter	work	
regardless	of	the	particular	encoding	technique	used.

Customer_�d (FK)
Product_�d (FK)
Store_id (FK)
Day (FK)

sales

SALES_FACTCustomer_�d
Profession
Name
Address

CUSTOMER

Day
Month
year

DATE

Item_�d
Class
Category
Brand

PRODUCT

Store_id
Area
Region
Populat�on

LOCATION

(a) (b)

Year

Month

Day

DATE

Profession

Customer

CUSTOMER

Region

Area

Store

LOCATION

Category

Class

Product

PRODUCT

Figure 1. (a) The schema of the data warehouse; (b) the dimension hierarchies of
the example

�40 Karayannidis, Tsois, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Definition 1 (Hierarchical Surrogate Key).
Assume	a	dimension	table	D	containing	the	hierarchical	attributes	hm,	hm-1,	…,	h1	(hm	
the	most	aggregated	level	and		h1	the	most	detailed	one).	Each	tuple	t	of	D	assigns	
the	values	t.vm,	t.vm-1,	…,	t.v1	to	the	corresponding	hierarchical	attributes.	Let	{oci}	
be	a	set	of	m	bijective	functions	so	that	oci: Vi {0,…,|Vi|-1},	where	1 ≤ i ≤ m	and	
Vi	is	the	set	of	values	of	the	hierarchical	attribute	hi	and	|Vi|	is	the	total	number	of	
values	in	this	set.	The	hierarchical surrogate key	(or	h-surrogate)	of	D	is	a	computed	
attribute	of	D	so	that	for	each	tuple	t	of	D	the	value	of	the	h-surrogate	is	hsk=ocm(t.
vm). ocm-1(t.vm-1). …. oc1(t. v1).	 	

The	value	assigned	by	a	oci	function	to	a	hierarchical	attribute	value	is	called	an	
order-code	and	since	these	functions	are	1-1	the	order-codes	uniquely	identify	a	
hierarchical	attribute	value.	In	Figure	2(b)	we	depict	the	hierarchy-tree	formed	from	
the	values	of	the	hierarchy	attributes	(equivalently	levels)	of	dimension	LOCATION.	
Below each value appears in parentheses its assigned order-code. In the same figure
we	depict	the	h-surrogate	value	for	the	leaf-value	“storeC.”	Note	that	an	h-surro-
gate conveys all the hierarchical semantics (i.e., the genealogy) of a specific value.
Moreover	it	is	indeed	an	alternate	key,	since	it	determines	all	hierarchical	attributes,	
which	in	turn	functionally	determine	all	feature	attributes.	Note	also	that	leaf-values	
under the same parent have a common h-surrogate prefix. For example the prefix
“0.1” in Figure 2(b) is the same for the two stores in “AreaB” and the prefix “0.” is
common	to	all	stores	in	“RegionA.”	We	use	the	notation	hsk:L to refer to the prefix
of	the	h-surrogate	that	corresponds	to	the	level	L	of	the	hierarchy.

Figure 2. (a) The schema of the data warehouse enhanced with h-surrogates; (b)
each value of a hierarchical attribute is assigned an order-code, which preserves
hierarchical proximity.

Note: An h-surrogate is essentially a path of order-codes in the hierarchy tree.

Customer_�d (FK)
Product_�d (FK)
Store_id (FK)
Day (FK)

Cust_hsk (FK)
Prod_hsk (FK)
Loc_hsk (FK)
Date_hsk (FK)

sales

SALES_FACT
Customer_�d
Profession
Name
Address

Cust_hsk

CUSTOMER

Day
Month
Year

Date_hsk

DATE

Item_�d
Class
Category
Brand

Prod_hsk

PRODUCT

Store_id
Area
Region
Populat�on

Loc_hsk

LOCATION

(a) (b)

RegionA
(0)

AreaA
(0)

AreaB
(�)

storeA
(0)

storeB
(�)

storeC
(�)

storeD
(�)

hsk(storeC)= 0.�.2

Advanced Ad Hoc Star Query Processing �4�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Each	h-surrogate	can	 trigger	 the	creation	of	a	foreign	key	 in	 the	fact	 table.	The	
concatenation	of	all	these	foreign	keys	produces	the	fact	table’s	primary	key.	This	
is	depicted	in	Figure	2(a).	Note	that	for	the	fact	table	we	have	two	alternative	com-
posite	keys:	(a)	(Customer_id, Product_id, Store_id, Day)	that	links	to	the	corre-
sponding	lowest	hierarchical	attribute	of	each	dimension	and	(b)	(Cust_hsk, Prod_
hsk, Loc_hsk , Date_ hsk)	that	links	to	the	corresponding	h-surrogate	attribute.	Note	
that	the	former	is	not	necessary	to	achieve	hierarchical	clustering	of	the	data,	and	
thus	could	be	omitted,	in	order	to	reduce	storage	overhead.
The h-surrogates play a central role in processing ad hoc star queries, first because
they	enable	the	clustering	of	the	fact	table	according	to	the	dimension	hierarchies,	
and	second	because	they	can	be	exploited	to	optimize	the	query	evaluation	plans.	
Experiments	in	Karayannidis	et	al.	(2002)	have	shown	speed-ups	up	to	a	factor	of	
20,	over	the	state	of	the	art	bitmap-based	star	join	processing	(see	section	on	other	
methods	for	star	query	processing).	Even	more	interestingly,	this	factor	doubled	
when	query	optimization	techniques	that	are	discussed	later	in	this	chapter	were	
exploited.
The	h-surrogates	should	be	system	assigned	and	maintained	attributes,	and	typically	
they	should	be	made	transparent	to	the	user.	The	actual	implementation	of	the	h-sur-
rogates	depends	heavily	on	the	underlying	physical	organization	of	the	fact	table.	
Proposals	for	physical	organizations	(Karayannidis	et	al.,	2004;	Markl	et	al.,	1999)	
exploit	such	path-based	surrogate	keys,	in	order	to	achieve	hierarchical	clustering	
of	the	fact	table	data.
In	this	chapter,	we	adopt	a	denormalized	approach	for	the	design	of	a	dimension;	
that	is,	we	represent	each	dimension	with	only	one	table.	The	hierarchical	attributes	
(h1,	h2,	…,hm),	the	feature	attributes	(f1,	f2,	…,	fk),	as		well	as	the	hierarchical	sur-
rogate	key	hsk	of	the	dimension	are	stored	in	a	unique	dimension	table.	However,	
the	presented	methods	are	fully	applicable	to	normalized	schemata	(i.e.,	snowflaked
schemata)	as	well,	with	the	only	difference	that	extra	joins	between	the	several	di-
mension	tables	(corresponding	to	separate	hierarchy	levels)	must	be	included	in	the	
plan.	In	addition,	we	assume	a	special	physical	organization	for	the	fact	table.	The	
fact	table	is	stored	hierarchically	clustered	in	a	multidimensional	data	structure	such	
as	the	CUBE	File	(Karayannidis	et	al.,	2004)	or	the	UB-tree	(Markl	et	al.,	1999).	
The	index	attributes	of	these	structures	are	the	h-surrogates.

Star.Queries

OLAP	queries	typically	include	restrictions	on	multiple	dimension	tables	that	trig-
ger	restrictions	(via	the	foreign	key	relationships)	on	the	(usually	very	large)	fact	
table.	This	is	known	as	a	star join (O’Neil	&	Grafe,	1995).	We	use	the	term	star
query to refer to flat SQL queries, defined over a single star schema, that include a
star	join.	Star	queries	represent	the	majority	of	OLAP	queries.	In	particular,	we	are	

�42 Karayannidis, Tsois, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

interested	in	ad hoc OLAP	star	queries.	With	the	term	“ad	hoc”	we	refer	to	queries	
that	are	not	known	in	advance	and	therefore	the	administrator	cannot	optimize	the	
DBMS specifically for these.
In	Figure	3	we	depict	the	SQL	query	template	for	the	ad	hoc	star	queries	considered.	
The template defines the most complex query structure supported and uses abstract
terms	that	act	as	placeholders.	Note	that	queries	conforming	to	this	template	have	
a	structure	that	is	a	subset	of	the	template	in	Figure	3	and	instantiate	all	abstract	
terms.	
The	terms	D1,	D2,	…,	Dk	are	the	dimension	tables	of	the	star	join	and	LP1,	LP2,	..,	
LPk	are	the	corresponding	local predicates.	Thus,	the	term	LPi	is	a	local predicate	
on	the	dimension	table	Di.	The	characterization	“local”	is	because	this	predicate	
includes	restrictions	only	on	Di	and	not	on	other	dimension	tables	or	the	fact	table.	
This	predicate	 is	very	 important	 for	 the	h-surrogate	processing	phase	explained	
later,	and	is	used	to	produce	the	necessary	h-surrogate specification	accessing	the	
fact	table	discussed	later.		
The	vast	majority	of	OLAP	queries	contains	an	equality	restriction	on	a	number	of	
hierarchical	attributes	and	more	commonly	on	hierarchical	attributes	that	form	a	
complete	path	in	the	hierarchy	(i.e.,	starting	from	the	most	aggregated	level	to	some	
lower	level	without	“gaps”	in	between).	For	example,	the	query		“show	me	sales	for	
area	A	in	region	B	for	each	month	of	1999”	contains	two	whole-path	restrictions,	
one	for	a	dimension	LOCATION	and	one	for	a	DATE:	(a)	LOCATION.Region = ‘A’
AND	LOCATION.Area = ‘B’ and (b) DATE.Year	=	1999.	This	is	reasonable	since	
the	core	of	analysis	is	conducted	along	the	hierarchies.	We	call	this	kind	of	restric-
tion	hierarchical prefix path	(HPP)	restrictions.	Note	also	that	even	if	we	impose	a	
restriction	solely	on	an	intermediate	level	hierarchical	attribute,	we	can	still	have	
an	HPP	restriction,	as	long	as	hierarchical	attributes	functionally	determine	higher	
level	ones.	For	example,	the	restriction	Month = ‘AUG-99’	implies	also	that	Year
= 1999.
Let us now define an example query on the schema of Figure 1: We want to see the
sum	of	sales	by	area	and	month	for	areas	with	population	more	than	1	million,	for	

SELECT <grouping attributes and/or aggregation functions>
FROM <fact table>, D�, D�, …, Dk
WHERE <star join conditions: equalities on key-f.key> AND
 LP� AND LP� AND … AND LPk AND
 <restrictions on attributes of the fact table>
GROUP BY <grouping attributes>
HAVING <group selection predicate>
ORDER BY <sorting attributes>

Figure 3. The ad hoc star query template

Advanced Ad Hoc Star Query Processing �4�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

the	months	of	the	year	1999	and	for	products	that	belong	to	the	category	“air	con-
dition.”	Figure	4	shows	the	corresponding	SQL	expression	of	this	query.	One	can	
easily	see	that	the	query	is	an	instance	of	the	query	template	of	Figure	3.

Star.Query.Processing.

Methods.of.Ad-Hoc.Star.Query.Processing.

The	most	well	known	technique	for	star-query	processing	is	based	on	a	star-join	
via	bitmap	index	intersections.	Star	join	processing	has	been	studied	extensively	
and specific solutions have been implemented in commercial products. See also
Chaudhuri	and	Dayal	(1997)	for	an	overview.	
The	standard	query	processing	algorithm	for	a	star	join	over	n dimensions first evalu-
ates the predicates on the dimension tables, either on a normalized (snowflake) or
a	denormalized	(star)	schema,	resulting	in	a	set	Ri	of	ni	tuples	of	dimension	Di (1 ≤
i ≤ n).	It	then	builds	a	Cartesian product	of	the	dimension	result	tuples	(R1	×	R2	×	
…	×	Rn).	The	cardinality	of	the	Cartesian	product	is	n1 · n2 ·…· nn	for	the	n	restricted	
dimensions.	With	these	Cartesian	product	tuples,	we	perform	a	direct	index	access	
on	the	composite	index	built	on	the	fact	table.	For	nonsparse	fact	tables	and	que-
ries	that	restrict	most	dimensions	of	the	composite	index	in	the	order	of	the	index	
attributes,	the	access	to	the	fact	tuples	is	quite	fast.	However,	for	large	sparse	fact	
tables and high dimensionality, such a query processing plan does not work effi-
ciently	enough.	The	cardinality	of	the	Cartesian	product	resulting	from	the	dimen-
sion	predicates	grows	very	fast,	whereas	the	number	of	affected	tuples	in	the	fact	
table	may	be	relatively	small.	This	is	the	point	where	a	call	is	made	for	specialized	
indexing	or	clustering	methods.
Bitmapped	join	indices	(O’Neil	&	Graefe,	1995;	O’Neil	&	Quass,	1997)	are	often	
used	to	speed	up	the	access	to	the	fact	table.	This	type	of	star-join	evaluation	has	
also	been	incorporated	into	a	popular	commercial	system	(Oracle,	2005).	The	so-

SELECT L.area, D.month, SUM(F.sales)
FROM SALES_FACT F, LOCATION L, DATE D, PRODUCT P
WHERE F.day = D.day AND F.store_id = L.store_id AND
 F.product_id = P.item_id AND D.year = ���� AND
L.population>�000000 AND P.category = “air condition”
GROUP BY L.area, D.month

Figure 4. Example query

�44 Karayannidis, Tsois, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

called	star transformation rewrites	a	star-join	so	as	the	dimension	restrictions	are	
expressed	as	direct	restrictions	on	the	fact	table	column.	For	example,	following	
query	containing	a	star-join:

SELECT dim2.dim2_attr, dim�.dim�_attr, dim�.dim�_attr, fact.fact�
FROM fact, dim2, dim�, dim�
WHERE fact.dim2_key = dim2.dim2_key /* joins */
AND fact.dim�_key = dim�.dim�_key
AND fact.dim�_key = dim�.dim�_key
AND dim2.dim2_attr IN (’c’,’d’) /* dimension restrictions */
AND dim�.dim�_attr IN (’e’,’f’)
AND dim�.dim�_attr IN (’l’,’m’)
is rewritten in the following form:
SELECT … FROM fact
WHERE fact.dim2_key IN (SELECT dim2.dim2_key FROM dim2 WHERE dim2.dim2_attr IN
(‘c’,’d’))
AND fact.dim�_key IN (SELECT dim�.dim�_key FROM dim� WHERE dim�.dim�_attr IN
(‘e’,’f’))
AND fact.dim�_key IN (SELECT dim�.dim�_key FROM dim� WHERE AND dim�.dim�_attr
(‘l’,’m’))

	
In	this	way,	the	evaluation	of	the	individual	dimension	restrictions	takes	place	in	the	
beginning,	as	if	these	were	separate	queries.	From	this	evaluation	only the dimension
keys	of	the	qualifying	tuples	are	extracted;	and	for	large	dimensions,	the	results	are	
saved	into	temporary	tables.	In	the	mean	time,	a	separate	bitmap	index	has	been	
created	on	each	fact	table	attribute	that	is	a	foreign	key	referencing	a	dimension	
table	key.	Then,	the	extracted	list	of	qualifying	dimension	keys,	for	each	dimension,	
is	used	to	access	the	bitmap	index	on	the	corresponding	fact	table	column.	The	cre-
ated bitmaps are merged (i.e., ANDed) and a final bitmap, indicating the qualifying
fact table tuples, is produced. Next, bits set on the final bitmap are converted to the
corresponding	row	ids	and	the	fact	table	tuples	are	retrieved.	Finally,	these	tuples	
have	to	be	joined	to	the	dimension	tables	in	order	to	retrieve	the	dimension	attribute	
values required in the final result.
The	main	advantage	of	this	method	is	that	the	bitmap	operations	can	be	executed	
very efficiently. However, the lack of appropriate data clustering might lead to a
significant number of I/Os. When the query selectivity is high (small output), then
only a few bits in the final bitmap are set. If there is no particular order among
the	fact	table	tuples,	we	can	expect	each	bit	to	correspond	to	a	tuple	on	a	differ-
ent	page.	Thus,	there	will	be	as	many	I/Os	as	there	are	bits	set.	Moreover,	bitmap	
indexes become inefficient if the number of distinct values for a column is large
(O’Neil	&	Quass,	1997).	In	this	case	the	“bitmap	density”	(i.e.,	the	number	of	bits	

Advanced Ad Hoc Star Query Processing �4�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

set per bitmap) becomes low and the storage overhead is significantly increased.
Therefore, compression techniques have to be used that will reduce the efficiency
of	the	bitmap	operations.

An Abstract Plan for Star Query Processing

In	this	section,	we	will	describe	the	major	processing	steps	entailed	when	we	want	
to	answer	star	queries	over	a	hierarchically	clustered	fact	table.	

•	 Step 1. Identifying relevant fact table data: The	processing	begins	with	the	
evaluation	of	the	restrictions	on	the	individual	dimension	tables,	that	is,	the	
evaluation	of	the	local	predicates	(operations	Create_Range	in	Figure	5(a)).	
This	step	performed	on	a	hierarchically	encoded	dimension	table	will	result	in	
a	set	of	h-surrogate	values	that	will	be	used	in	order	to	access	the	correspond-
ing	fact	table	data.	Due	to	the	hierarchical	nature	of	the	h-surrogate,	this	set	
can	be	represented	by	a	number	of	h-surrogate	intervals	called	the	h-surrogate
specification.	Using	 the	notation	of	Karayannidis	et	al.	 (2004),	an	 interval	
will	have	the	form	1999.*.*	for	the	restriction	on	the	DATE	dimension	in	our	
running	example.	This	denotes	that	we	need	to	access	all	values	under	1999	
at	the	Month	level	and	all	values	of	each	such	month	at	the	Day	level.	

 Once the h-surrogate specifications are determined for all	dimensions,	 the	
evaluation	of	the	star	join	follows.	In	hierarchically	clustered	fact	tables,	this	
translates	to	one	or	more	simple	multidimensional	range	queries	on	the	underly-
ing	multidimensional	structure	that	is	used	to	store	the	fact	table	data	(operator	
MD_Range_Access	in	Figure	5(a)).	Moreover,	since	data	are	physically	clus-
tered	according	to	the	hierarchies	and	the	ranges	originate	from	hierarchical	
restrictions,	this	will	result	in	a	low-I/O	evaluation	of	the	range	selection.

•	 Step 2. Computing necessary joins: The	tuples	resulting	from	the	fact	table	
contain	 the	h-surrogate	values	and	the	measure	values.	At	 this	stage,	 there	
might	be	a	need	for	joining	these	tuples	with	a	number	of	dimension	tables	in	
order	to	retrieve	certain	hierarchical	or	feature	attributes	that	the	user	wants	to	
have in the final result and might also be needed for the grouping operation.
We	call	these	joins	residual joins.	Note	that	all	these	join	operations	(the	Re-
sidual_Join	nodes	in	Figure	5(a))	are	equi-joins	on	key-foreign	key	attributes	
and	therefore	each	fact	table	tuple	is	joined	with	exactly one	dimension	table	
tuple.	

•	 Step 3. Performing grouping, filtering, and ordering: Finally,	the	result-
ing tuples may be grouped and aggregated and the groups further filtered and
ordered	for	delivering	 the	 result	 to	 the	user.	The	Group_Select	operator	 in	
Figure	5(a)	performs	these	actions.	

�46 Karayannidis, Tsois, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

The	abstract	processing	plan	comprising	of	the	phases	is	illustrated	in	Figure	5(a)	
and	can	be	used	to	answer	the	star	queries	that	belong	to	the	query	template	of	Figure	
3. This plan is abstract in the sense that it does not determine specific algorithms
for each processing step; it just defines the processing that needs to be done. That is
why	it	is	expressed	in	terms	of	abstract	operators	(or	logical operators),	which	in	
turn	can	be	mapped	to	a	number	of	alternative	physical operators	that	correspond	
to specific implementations.
An	example	abstract	processing	plan	is	shown	in	Figure	5(b)	and	it	corresponds	to	
the	query	of	Figure	4.
Having	described	the	framework	for	query	processing	of	OLAP	queries,	we	move	
next	to	discuss	how	this	can	be	materialized	on	a	hierarchical	clustering-preserving	
data	structure,	namely	the	CUBE	File.

Figure 5. (a) The abstract processing plan; (b) the abstract processing plan for
the example query

MD_Range_Access
DATE

Residual_Jo�n
(Day)

LOCATION

Group_Select
(area, month)

Main execution phase

DATE PRODUCT LOCATION

Create_Range
(Year=����)

Create_Range
(Category=”a�r

cond�t�on”)

Create_Range
(Populat�on >

�000000)

SALES_FACT

Residual_Jo�n
(Store_id)

h-surrogate processing

MD_Range_Access

Residual_Jo�n

Group_Select

Main execution phase

D� Dj

Create_Range
FT

h-surrogate processing

Create_Range

D�

Dj

Order_By

Residual_Jo�n

...

...

(a)

(b)

Advanced Ad Hoc Star Query Processing 147

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Processing Star Queries over CUBE File Organized
Fact Tables

The CUBE File (Karayannidis et al., 2004) is a multidimensional data structure for
storing the most detailed data of a fact table. Thus it could be exploited as an alter-
native primary organization to heap files for fact tables. It provides fast indexing
on data, when these are accessed via restrictions on the hierarchies. Moreover, it
physically clusters data w.r.t. dimension hierarchies (i.e., hierarchical clustering),
which reduces significantly the I/O cost for star query evaluation.
The CUBE File partitions the multilevel-multidimensional data space of an OLAP
cube in disjoint subspaces, called chunks, which are formed by all hierarchy value
combinations per hierarchy-level. This process is called hierarchical chunking (Fig-
ure 6(a)) and results in a chunk-tree representation of the cube (Figure 6(b)). Note
that prior to applying hierarchical chunking all hierarchies have to be normalized
to the same length with the insertion of pseudo-levels to the shorter ones. The main
advantage of hierarchical chunking is that it results in a structure that is highly adap-
tive to the cube’s inherent extreme sparseness. The intuition is that the underlying
data clusters are located naturally during the chunking process, exactly because
hierarchy value combinations form the dense and sparse data areas. For example, a

Figure 6. (a) A cube hierarchically chunked; (b) the whole subtree up to the data
chunks under chunk 0|0 (corresponding to the grayed cells on the left figure)

�48 Karayannidis, Tsois, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

sparse	area	would	be	formed	in	a	3-dimenisonal	cube,	along	the	subspace	(Sept00-
Dec00,	Books,	Italy)	if	we	did	not	sell	any	books	during	Sept00-Dec00	in	Italy.
A	subtree	at	chunking-depth D corresponds	to	a	“family”	(i.e.,	a	subspace)	of	hier-
archy-related	data	points.	In	fact	the	taller	this	subtree	is	(i.e.,	the	smaller	D	is),	the	
larger	is	the	subspace	of	hierarchy-related	data	points	that	it	“covers.”	Based	on	this	
observation,	the	CUBE	File	construction	algorithm	tries	to	“pack”	into	buckets	(i.e.,	
disk	pages)	whole	subtrees	of	the	smaller	possible	depth.	This	is	the	basic	heuristic	
exploited	by	the	CUBE	File	for	achieving	hierarchical	clustering	of	the	data.	Note	
that	the	packing	of	chunks	into	buckets,	so	as	to	preserve	hierarchical	clustering,	is	
an	NP-Hard	problem	(Karayannidis,	2003).
In Figure 7 we depict such an allocation of chunks into buckets. In this figure we
depict an arbitrary chunk-tree, where subtrees appear as triangles and specific nodes
(i.e.,	chunks)	as	squares.	The	number	within	a	triangle	denotes	the	size	of	the	cor-
responding	subtree.	The	number	within	a	square	denotes	the	size	of	all	subtrees	
under this node, plus the size of the node itself. In the figure, we have assumed a
bucket	size	of	30	storage	units.	The	lowest	depth	subtree	that	has	been	stored	in	a	
bucket	corresponds	to	depth	D = 1	(see	bucket	B1).	This	bucket	has	the	maximum	
hierarchical clustering degree among all buckets of the specific chunk-to-bucket
allocation.	Essentially	this	means	that	HPP	queries	that	need	to	access	B1	will	have	
reduced	I/O	cost,	since	this	bucket	has	stored	a	larger	subspace.

Figure 7. The chunk-to-bucket allocation for a chunk-tree where the size of a bucket
is SB = 30 units of storage

6�

40 ��

�0

20

� �

�

�

�

D = 0

D MAX = �

D = �

SB = 30

B�

B�

B�

Advanced Ad Hoc Star Query Processing 149

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Note that the upper nodes (including the root node) that “fail” to be allocated to
some bucket comprise the root-directory of the CUBE File. The root-directory is
usually cached in main memory or it is further allocated into buckets as if it is a
chunk-tree on its own.
The CUBE File requires the assignment of h-surrogates to the dimension values.
Moreover, for each cell of a chunk, the interleaving of the corresponding h-surro-
gates yields a path-based key called the chunk-id, which is a unique identifier of a
data point in the multilevel multidimensional data space of a cube. For example,
0|0.0|0 is the chunk-id of the low-left cell of the chunk at depth D = 1 in Figure
6(b) (in the figure, it is depicted as a label on the corresponding chunk). “P” in a
chunk-id denotes a pseudo-level.
In Figure 8(a), we depict the abstract processing plan of Figure 5(b) as a physical
execution plan over a CUBE File organized fact table. We can see the evaluation of
the local predicate on the DATE dimension consisting of an HPP restriction solely

Figure 8. (a) The abstract processing plan of our running example expressed as a
physical execution plan over a CUBE File organized fact table; (b) the optimized
abstract plan

��0 Karayannidis, Tsois, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

on the HPP-Index (a B-tree index defined on the hierarchy attributes of a dimen-
sion)	without	the	need	to	access	the	base	table	(i.e.,	the	DATE dimension	table).	The	
restriction	Year = 1999 has been translated to the h-surrogate specification 0.*.*	
(assuming	that	the	order-code	of	1999	is	0). Note that only the first matching index-
tuple	(corresponding	to	the	Day level) suffices for generating the corresponding
h-surrogate specification, since all days of 1999 have the same h-surrogate prefix:
0..	This	single	index-tuple	retrieval	is	an	extremely	fast	implementation	of	the	Cre-
ate_Range	abstract	operation	of	Figure	5(a).	
The	same	holds	for	the	PRODUCT dimension	also,	since	another	HPP	restriction	
is imposed there. The corresponding h-surrogate specification for the restriction
Category = ‘Air Condition’	is	3.*.* (assuming that the order-code of the ‘Air Con-
dition’	value	is	3).	For	dimension	LOCATION	things	are	a	bit	different	since	we	
have	to	perform	a	full	table	scan	directly	on	the	base	table	and	then	select	the	tuples	
that	match	the	restriction	on	the	feature	attribute	Population,	which	is	functionally	
dependent	on	the	hierarchical	attribute	Area.	The	corresponding	h-surrogate	speci-
fication is 2.6.*	assuming	that	only	one	area	(with	order-code	6)	in	a	single	region	
(with	order-code	2) satisfies the restriction on the Population	feature	attribute.
As soon as the h-surrogate specifications are extracted from each dimension, they
are	 combined	 into	 a	 single	chunk expression (CX)	 that	 is	passed	as	 input	 to	 an	
MDRangeSelect operator.	A	chunk	expression	is	essentially	an	access	pattern	de-
scribing	the	cells	that	must	be	accessed	in	each	depth	of	the	chunk-tree	and	exploits	
the	chunk-id	notation.	The	chunk	expression	is	created	from	the	interleaving	of	the	
h-surrogate specifications. The depicted chunk expression 0|3|2|*.*|*|6|P.*|*|*|*	
is built from the interleaving of the aforementioned h-surrogate specifications, plus
the h-surrogate specification for the CUSTOMER	dimension,	which	is	*.P.*,	since	
this	dimension	is	left	unrestricted	in	the	query	of	Figure	4	(“P”	denotes	a	pseudo-
level).	The	interleaving	order	is	DATE, PRODUCT, LOCATION, and CUSTOMER	
and	was	chosen	arbitrarily.
The	MDRangeSelect will access the CUBE File in order to efficiently retrieve the
relevant	detailed	data	(described	in	the	CX).	Each	sales	value	retrieved	will	be	aug-
mented	with	two	h-surrogates,	one	corresponding	to	the	DATE dimension	and	the	
other	to	LOCATION,	which	are	dynamically	computed	from	the	corresponding	data	
cell	chunk-id	(which	is	not	stored	along	with	the	measure	values,	since	the	chunks	
are	essentially	multidimensional	arrays,	but	retrieved	from	the	current	position/data	
point	in	the	cube’s	data	space).	This	provides	the	“impression”	of	tuples	coming	out	
of	the	MDRangeSelect	operator.	
Furthermore,	these	tuples	will	need	to	be	joined	with	the	DATE dimension	in	order	
to	retrieve	the	Month values required in the final result. This join is implemented
by	a	physical	operator	named	 IndexResJoin in the figure. Essentially, this is an
index-based	join	that	utilizes	the	primary	organization	of	the	dimension	tables	to	
efficiently retrieve the single	join	tuple	from	the	dimension	side.	A	dimension	table	

Advanced Ad Hoc Star Query Processing ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

is	organized	as	a	B+	tree	with	the	h-surrogate	attribute	as	the	search	key.	Each	tuple	
coming	from	the	CUBE	File	side	contains	an	hsk attribute	(i.e.,	an	h-surrogate)	
corresponding	to	the	DATE dimension.	We	use	this	value	as	a	key	for	accessing	
directly	the	DATE dimension	and	retrieving	the	single	tuple	that	matches.	Indeed,	
since	hsk	is	a	primary	key	of	the	dimension	table,	there	will	be	only	a	single	tuple	
match.	Therefore,	the	number	of	tuples	in	the	output	of	the	IndexResJoin	operator	
is	the	same	as	the	one	in	the	input.
Similarly,	for	each	hsk	value	corresponding	to	dimension	LOCATION	we	access	the	
corresponding	tuple	and	retrieve	the	appropriate	Area	value.	Finally,	the	grouping	
and	aggregation	has	to	take	place.	We	depict	a	hash-group	operator	that	groups	the	
incoming	tuples	by	Area	and	Month.

Star Query Optimization

An	interesting	feature	of	the	database	schema	is	the	hierarchical	structure	of	the	
h-surrogate	attributes	and	the	fact	that	they	encode	all	the	hierarchical	attributes	
of	 the	dimensions.	Therefore,	 a	number	of	 functional	dependencies	 exist	 in	 the	
schema, along with inclusion dependencies defined through the key-foreign key
relationships.	These	functional	and	inclusion	dependencies	can	be	combined	and	
used	for	the	optimization	of	the	grouping	and	join	operations.	The	complex	optimi-
zation	technique	that	exploits	these	existing	integrity	constraints	is	the	hierarchi-
cal pregrouping and	it	is	presented	next.	Experimental	results	have	shown	that	this	
technique	can	drastically	reduce	the	execution	time	of	the	examined	OLAP	queries	
(Pieringer	et	al.,	2003).	
Other	optimization	opportunities	exist	and	pertain	to	the	Create_Range	operation	
of	the	abstract	processing	plan	(Figure	5(a)),	or	the	exploitation	of	the	sort-order	of	
the	tuples	coming	from	the	fact	table	(MD_Range_Access	operation).	Due	to	lack	
of	space,	 these	 techniques	will	not	be	described	here.	The	 interested	reader	can	
find details in Karayannidis et al. (2002), Tsois and Sellis (2003), Pieringer et al.
(2003),	and	Tsois	(2005)	for	the	former	and	in	Theodoratos	and	Tsois	(2003)	and	
Tsois	(2005)	for	the	latter.	
The	Hierarchical	Pregrouping	technique	is	based	on	the	properties	of	the	join	and	
grouping	operations.	The	grouping	operation	uses	the	values	of	the	grouping	attri-
butes	only	to	group	tuples	that	have	the	same	value.	However,	the	actual	value	of	
a	grouping	attribute	is	not	important.	Therefore,	an	attribute	X	that	is	used	only	in	
a	grouping	operation,	like	Group_Select,	can	be	replaced	with	any	other	attribute	
Y	when	there	is	a	bijective	(1-1	and	onto)	mapping	among	the	values	of	X	and	Y.	
Therefore,	one	can	use	the	functional	(and	inclusion)	dependencies	in	order	to	re-
place	grouping	attributes.	In	a	similar	manner	functional	and	inclusion	dependencies	

��2 Karayannidis, Tsois, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

allow the modification of join conditions, as explained in detail by Tsois (2005) and
Tsois	and	Sellis	(2003).	By	replacing	grouping	attributes	and	join	conditions,	the	
hierarchical pregrouping technique can group the fact table tuples very efficiently
before	the	residual	join	operations,	it	can	push	join	operations	above	the	grouping	
operations	and	it	can	even	remove	completely	some	of	the	join	operations.
The	key	 idea	used	 in	 the	hierarchical	pregrouping	 transformation	 is	 the	 follow-
ing:	if	a	hierarchical	attribute	hk	of	a	dimension	Di	is	used	in	the	query	evaluation	
plan	just	for	grouping	or	just	for	an	equi-join	operation,	then	this	attribute	can	be	
replaced	by	its	encoded	form	which	exists within (as a prefix) the corresponding
h-surrogate.	 If	hski	 is	 the	corresponding	h-surrogate,	 the	encoded	value	of	hk	 is	
denoted	as	hski:hk.	
For	example,	for	the	LOCATION	dimension	in	our	running	example	of	Figure	4,	
we can use the prefix part of the h-surrogate to group on the Area	attribute,	instead	
of	using	the	actual	Area	attribute.	This	is	because	all	tuples	of	LOCATION	with	the	
same	values	in	the	Region and	Area attributes will have the same prefix in the h-
surrogate	value.	Furthermore,	since	the	foreign	key	loc_hsk	exists	in	the	fact	table	
we	can	group	the	fact	table	tuples	according	to	the	Area	attribute	without	having	to	
join	them	with	the	LOCATION	dimension	table.
Lets	see	how	this	transformation	affects	the	abstract	plan	shown	in	Figure	5(b)	for	
our	example	query	of	Figure	4.	The	hierarchical	pregrouping	transformation	modi-
fies this initial plan by changing the grouping attributes and pushing both residual
join	operations	after	the	Group_Select	operation.	This	is	possible	because	group-
ing	is	done	on	hierarchical	attributes	only	(attributes	Area	and	Month)	that	have	a	
corresponding	encoded	form	in	the	h-surrogates	found	in	the	fact	table	(loc_hsk:
area,	date_hsk:month). The residual join operations are modified so that each tuple
in	the	output	of	the	Group_Select	operation	is	joined	with	only	one	tuple	from	the	
DATE	dimension	and	one	tuple	from	the	LOCATION	dimension.	The	resulting	plan	
is	shown	in	Figure	8(b).
By	exploiting	the	above	properties	of	the	h-surrogates	the	hierarchical	pregrouping	
transformation can achieve three different types of modifications to the proposed
abstract	processing	plan	for	star	queries	(Figure	5(a)):

1.	 It	can	eliminate	a	residual	join	operation	completely.	This	case	happens	when	
the	removed	dimension	table	was	joined	only	to	obtain	access	to	hierarchical	
attributes	that	where	then	used	only	for	the	grouping	operation.

2.	 It	can	split	the	grouping	operation	of	the	initial	plan	into	two	stages:	in	the	
first stage, a pregrouping of the fact table tuples is performed before invoking
them	in	residual	join	operations.	The	grouping	is	performed	using	the	h-surro-
gates	contained	in	the	fact	table	(the	foreign	keys).	In	the	second	stage,	which	
is	executed	after	performing	the	required	residual	joins,	the	tuples	are	once	
again	grouped	to	obtain	the	required	result.	This	second	grouping	operation	

Advanced Ad Hoc Star Query Processing ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

uses	some	of	the	attributes	that	where	acquired	with	the	residual	join	opera-
tions	performed.	This	transformation	reduces	drastically	the	number	of	tuples	
involved in the residual join operations and therefore it reduces significantly
the	cost	of	the	query	evaluation	plan.

3.	 It	can	push	join	operations	above	the	grouping	operation	by	carefully	modifying	
the	grouping	attributes	and	the	join	condition.	The	result	of	this	transformation	
is	similar	to	the	previous	one:	it	reduces	the	number	of	tuples	involved	in	the	
affected	residual	join	operations	and	therefore	it	improves	the	overall	cost	of	
the	evaluation	plan.

Note	that	in	order	to	push	a	residual	join	operation	above	a	grouping	operation	the	
join must be carefully modified. This can be done either by grouping the dimension
table	and	modifying	the	join	condition	or	by	using	special	join	algorithms	that	join	
each fact table tuple with only one tuple (the first matching tuple) from the dimension
table.	This	is	because	all	initial	residual	joins	are	equi-joins	on	the	key	attribute.
The details of the hierarchical pregrouping transformation and its definition as
an	algorithm	appear	in	Karayannidis	et	al.	(2002)	and	Tsois	(2005).	A	theoretical	
analysis	of	the	transformation,	its	generalization	as	well	as	a	proof	of	correctness	
can	be	found	in	Tsois	(2005)	and	Tsois	and	Sellis	(2003).

Future.Trends

Speculating	about	the	future	trends	in	data	warehouse	query	processing	in	general,	
we	believe	that	there	are	two	main	factors	that	will	drive	the	processing	require-
ments	in	the	near	future:

1.	 Continuously	increasing	data	volumes	that	one	needs	to	analyze.	
2.	 Continuously	increasing	rates	by	which	data	for	analysis	are	generated	on	the	

one	hand	and	increasing	need	for	up	to	date	information	on	the	other.

The first factor calls for extremely scalable storage organizations that exploit a
plethora	of	successful	techniques	such	as	semantic	based	physical	data	clustering,	
precomputation	of	aggregates,	and	fast	indexing.	It	also	requires	even	more	elaborate	
semantic-based	optimization	transformations	that	will	reduce	the	amount	of	data	
processed	at	each	step.	The	second	calls	for	storage	structures	that	are	extremely	
adaptive to updates, and for processing techniques “borrowed” from the field of
data	stream	processing.

��4 Karayannidis, Tsois, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Conclusion.

In	this	chapter,	we	discussed	the	processing	of	ad	hoc	star	queries	over	hierarchically	
clustered	fact	tables.	We	presented	a	complete	abstract	processing	plan	that	covers	
all	the	necessary	steps	for	answering	such	queries.	This	plan	directly	exploits	the	
benefits of hierarchically clustered fact tables and opens the road for new optimiza-
tion	challenges.	We	showed	how	this	abstract	plan	can	be	“materialized”	for	the	case	
of	a	multidimensional	storage	structure	that	achieves	hierarchical	clustering,	namely	
the	CUBE File.	Finally,	we	presented	the	hierarchical	pregrouping	transformation	
as	a	powerful	optimization	technique	for	this	type	of	query	processing.
Clearly, star query processing over hierarchically clustered fact tables is signifi-
cantly	different	from	other	approaches.	The	most	remarkable	difference	is	that	the	
fact	table	access	is	transformed	to	a	multidimensional	range	query	through	the	use	
of	h-surrogates	(i.e.,	surrogate	keys	with	hierarchy	semantics).	Moreover,	fact	table	
physical	organizations	such	as	the	CUBE	File	exploit	h-surrogates	to	provide	physi-
cal	data	clustering	w.r.t	the	dimension	hierarchies,	resulting	in	a	reduced	I/O	fact	
table	access.	Finally,	the	exploitation	of	the	hierarchy	semantics	that	h-surrogates	
convey can lead to efficient query optimization techniques such as the hierarchical
pregrouping	transformation.
The	abstract	processing	plan	can	be	easily	incorporated	in	a	DBMS	provided	that	a	
hierarchical	clustering-preserving	fact	table	organization	is	supported.	For	example	
the	methods	introduced	in	this	chapter	have	been	fully	implemented	in	the	com-
mercial	relational	DBMS	TransBase	HyperCube®	(TransBase	HyperCube®,	2005),	
which	utilizes	the	UB-tree	(Bayer,	1997)	as	a	fact	table	primary	organization.

References

Bayer,	R.	 (1997).	The	universal	B-tree	for	multi-dimensional	 indexing:	General	
concepts.	 Proceedings of the Worldwide Computing and Its Applications,
International Conference, Tsukuba,	Japan	(pp.	198-209).

Chan,	C.	Y.,	&	Ioannidis,	Y.	(1998).	Bitmap	index	design	and	evaluation.	Proceed-
ings of the ACM SIGMOD International Conference on Management of Data,
Seattle,	WA	(pp.	355-366).

Chaudhuri,	S.,	&	Dayal,	U.	(1997).	An	overview	of	data	warehousing	and	OLAP	
technology.	SIGMOD Record, 26(1),	65-74.

Karayannidis,	N.	(2003).	Storage structures, query processing, and implementation
of on-line analytical processing systems.	PhD	doctoral	thesis,	National Techni-

Advanced Ad Hoc Star Query Processing ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

cal University of Athens. (2003).	Retrieved	May	29,	2006,	from	http://www.
dblab.ece.ntua.gr/~nikos/thesis/PhD_thesis_en.pdf

Karayannidis, N., Sellis, T., & Kouvaras, Y. (2004, March 14-18). CUBE file: A file
structure	for	hierarchically	clustered	OLAP	cubes.	In	Proceedings of the 9th
International Conference on Extending Database Technology	(pp.	621-638),	
Heraklion,	Crete,	Greece.		EDBT.

Karayannidis,	N.,	Tsois,	A.,	Sellis,	T.	Pieringer,	R.,	Markl,	V.	Ramsak,	F.,	et	al.	(2002).	
Processing	star-queries	on	hierarchically-clustered	fact-tables.	Proceedings of
the 28th International Conference on Very Large Data Bases (VLDB), Hong	
Kong	(pp.	730-741).

Markl,	V.,	Ramsak,	F.,	&	Bayern,	R.	 (1999).	 Improving	OLAP	performance	by	
multidimensional	 hierarchical	 clustering.	 Proceedings of the International
Database Engineering and Applications Symposium, Montreal,	Canada	(pp.	
165-177).

O’Neil,	P.	E.,	&	Graefe,	G.	(1995).	Multi-table	joins	through	bitmapped	join	indices.	
SIGMOD Record, 24(3),	8-11.

O’Neil,	P.	E.,	&	Quass,	D.	(1997).	Improved	query	performance	with	variant	indexes.	
Proceedings of the ACM SIGMOD International Conference on Management
of Data, Tucson,	AZ	(pp.	38-49).

Oracle®	10g.	(2005).	Documentation.
Pieringer,	R.,	Elhardt,	K.	Ramsak,	F.,	Markl,	V.,	Fenk,	R.,	Bayer,	R.,	et	al.	(2003).	

Combining	hierarchy	encoding	and	pre-grouping:	Intelligent	grouping	in	star	
join	processing.	Proceedings of the 19th International Conference on Data
Engineering (ICDE), Bangalore,	India	(pp.	329-340).

Roussopoulos,	N.	(1998).		Materialized	views	and	data	warehouses.	SIGMOD Re-
cord, 27(1),	21-26.

Sarawagi,	S.	(1997).	Indexing	OLAP	data.	Data Engineering Bulletin, 20(1),	36-
43.

Sarawagi, S., & Stonebraker, M. (1994, February 14-18). Efficient organization of
large	multidimensional	arrays.	In	Proceedings of the 11th International Con-
ference on Data Engineering, Houston,	Texas	(pp.	326-336).

Srivastava,	D.,	Dar,	S.,	Jagadish,	H.	V.,	&	Levy,	A.	Y.	(1996).	Answering queries
with aggregation using views.	Paper	presented	at	the	VLDB	Conference	1996	
(pp.	318-329).

Theodoratos,	D.,	&	Tsois,	A.	(2003,	May).	Processing	OLAP	queries	in	hierarchi-
cally	clustered	databases.	Data & Knowledge Engineering, 45(2),	205-224.

TransBase HyperCube® Relational Database System.	(2005).	Retrieved	May	29,	
2006,	from	http://www.transaction.de

��6 Karayannidis, Tsois, & Sellis

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Tsois,	A.	(2005).	Optimization of on-line analytical processing systems: Concep-
tual data modeling and query processing techniques.	Unpublished	doctoral	
dissertation,	National	Technical	University	Of	Athens.

Tsois,	A.,	&	Sellis,	T.	(2003).	The generalized pre-grouping transformation: Ag-
gregate-query optimization in the presence of dependencies	(Tech.	Rep.	No.	
TR-2003-4).	 Retrieved	 May	 29,	 2006,	 from	 http://www.dbnet.ece.ntua.gr/
pubs/uploads/TR-2003-4.pdf

Weber,	R.,	Schek,	H.-J.,	&	Blott,	S.	(1998).	A	quantitative	analysis	and	performance	
study	for	similarity-search	methods	in	high-dimensional	spaces.	VLDB,	194-
205.

Wu,	M.	C.,	&	Buchmann,	A.	P.	(1998).	Encoded	bitmap	indexing	for	data	ware-
houses.	ICDE,	220-230.

Yan,	W.	P.,	&	Larson,	P.-A.	(1995).	Eager	aggregation	and	lazy	aggregation.	VLDB,	
345-357.

Endnote

1	 	Naturally,	the	only	way	to	favor	more	than	one	hierarchy	(per	dimension)	in	
clustering	is	to	maintain	redundant	copies	of	the	cube	(Sarawagi	&	Stonebraker,	
1994),	or	 to	 treat	different	hierarchy	paths	as	 separate	dimensions	 (Markl,	
1999).	The	latter	results	in	an	increase	of	the	cube	dimensionality,	rendering	
clustering even more difficult (Weber, 1998).

Bitmap Indices for Data Warehouses ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Chapter.VII

Bitmap.Indices.for.
Data.Warehouses

Kurt Stockinger
Lawrence Berkeley National Laboratory, University of California, USA

Kesheng Wu
Lawrence Berkeley National Laboratory, University of California, USA

Abstract

In this chapter we discuss various bitmap index technologies for efficient query
processing in data warehousing applications. We review the existing literature and
organize the technology into three categories, namely bitmap encoding, compres-
sion, and binning. We introduce an efficient bitmap compression algorithm and
examine the space and time complexity of the compressed bitmap index on large
datasets from real applications. According to the conventional wisdom, bitmap
indices are only efficient for low-cardinality attributes. However, we show that the
compressed bitmap indices are also efficient for high-cardinality attributes. Timing
results demonstrate that the bitmap indices significantly outperform the projection
index, which is often considered to be the most efficient access method for multidi-
mensional queries. Finally, we review the bitmap index technology currently sup-
ported by commonly used commercial database systems and discuss open issues
for future research and development.

158 Stockinger & Wu

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Introduction

Querying large datasets to locate some selected records is a common task in data
warehousing applications. However, answering these queries efficiently is often
difficult due to the complex nature of both the data and the queries. The most
straightforward way of evaluating a query is to sequentially scan all data records
to determine whether each record satisfies the specified conditions. A typical query
condition is as follows: “Count the number of cars sold by producer P in the time
interval T”. This search procedure could usually be accelerated by indices, such as
variations of B-Trees or kd-Trees (Comer, 1979; Gaede & Guenther, 1998). Gen-
erally, as the number of attributes in a dataset increases, the number of possible
indexing combinations increases as well. To answer multidimensional queries effi-
ciently, one faces a difficult choice. One possibility is to construct a separate index
for each combination of attributes, which requires an impractical amount of space.
Another possibility is to choose one of the multidimensional indices, which is only
efficient for some of the queries. In the literature, this dilemma is often referred to
as the curse of dimensionality (Berchtold, Boehm, & Kriegl, 1998; Keim & Hin-
neburg, 1999).
In this chapter we discuss an indexing technology that holds a great promise in
breaking the curse of dimensionality for data warehousing applications, namely
the bitmap index. A very noticeable character of a bitmap index is that its primary
solution to a query is a bitmap. One way to break the curse of dimensionality is to
build a bitmap index for each attribute of the dataset. To resolve a query involving
conditions on multiple attributes, we first resolve the conditions on each attribute
using the corresponding bitmap index, and obtain a solution for each condition as a
bitmap. We then obtain the answer to the overall query by combining these bitmaps.
Because the operations on bitmaps are well supported by computer hardware, the
bitmaps can be combined easily and efficiently. Overall, we expect the total query
response time to scale linearly in the number of attributes involved in the query,
rather than exponentially in the number of dimensions (attributes) of the dataset,
thus breaking the curse of dimensionality.
These statements omitted many technical details that we will elaborate in this chap-
ter. In the next section we give a broad overview of the bitmap index and its relative
strengths and weaknesses to other common indexing methods. We then describe the
basic bitmap index and define the terms used in the discussions. We devote a large
portion of this chapter to review the three orthogonal sets of strategies to improve
the basic bitmap index. After reviewing these strategies, we give a more in-depth
discussion on how the word-aligned-hybrid (WAH) bitmap compression technique
reduces the bitmap index sizes. We will also present some timing results to dem-
onstrate the effectiveness of the WAH compressed bitmap indices for two different
application datasets. Our performance evaluation is deliberately based on datasets

Bitmap Indices for Data Warehouses ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

with	high-cardinality	attributes,	since	for	low-cardinality	attributes	the	performance	
advantage	of	bitmap	indices	is	well	known.	We	conclude	with	a	short	review	of	
bitmap	indices	available	in	commercial	DBMS	products	and	discuss	how	to	make	
bitmap	indices	better	supported	in	these	commercial	products.

Background

By	far	 the	most	commonly	used	indexing	method	is	 the	B-Tree	(Comer,	1979).	
Almost	every	database	product	has	a	version	thereof	since	it	is	very	effective	for	
online	transaction	processing	(OLTP).	This	type	of	tree-based	indexing	method	has	
nearly	the	same	operational	complexities	for	searching	and	updating	the	indices.	
This	parity	is	important	for	OLTP	because	searching	and	updating	are	performed	
with	nearly	the	same	frequencies.	However,	for	most	data	warehousing	applications	
such	as	online	analytical	processing	(OLAP),	the	searching	operations	are	typically	
performed	with	a	much	higher	frequency	than	that	of	updating	operations	(Chaudhuri	
&	Dayal,	1997;	Chaudhuri,	Dayal,	&	Ganti,	2001).	This	suggests	that	the	indexing	
methods	for	OLAP	must	put	more	emphasis	on	searching	than	on	updating.	Among	
the	indexing	methods	known	in	the	literature,	the	bitmap	index	has	the	best	balance	
between	searching	and	updating	for	OLAP	operations.
Frequently,	in	OLAP	operations	each	query	involves	a	number	of	attributes.	Further-
more,	each	new	query	often	involves	a	different	set	of	attributes	than	the	previous	
one.	Using	a	typical	multidimensional	indexing	method,	a	separate	index	is	required	
for	nearly	every	combination	of	attributes	(Gaede	&	Guenther,	1998).	It	is	easy	to	
see	that	the	number	of	indices	grows	exponentially	with	the	number	of	attributes	
in	a	dataset.	In	the	literature	this	is	sometimes	called	the	curse	of	dimensionality	
(Berchtold	et	al.,	1998;	Keim	&	Hinneburg,	1999).	For	datasets	with	a	moderate	
number	of	dimensions,	a	common	way	to	cure	this	problem	is	to	use	one	of	the	
multidimensional	indexing	methods,	such	as	R-Trees	or	kd-trees.	These	approaches	
have	two	notable	shortcomings.	Firstly,	they	are	effective	only	for	datasets	with	a	
modest number of dimensions, say, < 15. Secondly, they are only efficient for queries
involving	all	indexed	attributes.	However,	in	many	applications	only	some	of	the	
attributes	are	used	in	the	queries.	In	these	cases,	the	conventional	indexing	meth-
ods are often not efficient. For ad hoc range queries, most of the known indexing
methods	do	not	perform	better	than	the	projection	index	(O’Neil	&	Quass,	1997),	
which	can	be	viewed	as	one	way	to	organize	the	base.	The	bitmap	index,	on	the	
other	hand,	has	excellent	performance	characteristics	on	these	queries.	As	shown	
with	 both	 theoretical	 analyses	 and	 timing	 measurements,	 a	 compressed	 bitmap	
index can be very efficient in answering one-dimensional range queries (Stock-
inger,	Wu,	&	Shoshani,	2002;	Wu,	Otoo,	&	Shoshani,	2004,	2006).	Since	answers	
to one-dimensional range queries can be efficiently combined to answer arbitrary

�60 Stockinger & Wu

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

multidimensional range queries, compressed bitmap indices are efficient for any
range	query.	In	terms	of	computational	complexity,	one	type	of	compressed	bitmap	
index	was	shown	to	be	theoretically	optimal	for	one-dimensional	range	queries.	The	
reason	for	the	theoretically	proven	optimality	is	that	the	query	response	time	is	a	
linear	function	of	the	number	of	hits,	that	is,	the	size	of	the	result	set.	There	are	a	
number	of	indexing	methods,	including	B*-tree	and	B+-tree	(Comer,	1979),	that	are	
theoretically	optimal	for	one-dimensional	range	queries,	but	most	of	them	cannot	
be used to efficiently answer arbitrary multidimensional range queries.
The	bitmap	index	in	its	various	forms	was	used	a	long	time	before	relational	database	
systems	or	data	warehousing	systems	were	developed.	Earlier	on,	the	bitmap	index	
was regarded as a special form of inverted files (Knuth, 1998). The bit-transposed
file (Wong, Liu, Olken, Rotem, & Wong, 1985) is very close to the bitmap index
currently	in	use.	The	name	bitmap	index	was	popularized	by	O’Neil	and	colleagues	
(O’Neil,	1987;	O’Neil	&	Quass,	1997).	Following	the	example	set	in	the	descrip-
tion of Model 204, the first commercial implementation of bitmap indices (O’Neil,
1987),	many	researchers	describe	bitmap	indices	as	a	variation	of	the	B-tree	index.	
To respect its earlier incarnation as inverted files, we regard a bitmap index as a
data	structure	consisting	of	keys	and	bitmaps.	Moreover,	we	regard	the	B-tree	as	a	
way to layout the keys and bitmaps in files. Since most commercial implementa-
tions	of	bitmap	indices	come	after	the	product	already	contains	an	implementation	
of	a	B-tree,	it	is	only	natural	for	those	products	to	take	advantage	of	the	existing	
B-tree	software.	For	new	developments	and	experimental	or	research	codes,	there	
is	no	need	to	couple	a	bitmap	index	with	a	B-tree.	For	example,	in	a	research	pro-
gram	that	implements	many	of	the	bitmap	indexing	methods	discussed	later	in	this	
chapter	(FastBit,	2005),	the	keys	and	the	bitmaps	are	organized	as	simple	arrays	in	
a binary file. This arrangement was found to be more efficient than implementing
bitmap	indices	in	B-trees	or	as	layers	on	top	of	a	DBMS	(Stockinger	et	al.,	2002;	
Wu	et	al.,	2002).
The	basic	bitmap	index	uses	each	distinct	value	of	the	indexed	attribute	as	a	key,	
and	generates	one	bitmap	containing	as	many	bits	as	the	number	of	records	in	the	
dataset	for	each	key	(O’Neil,	1987).	Let	the	attribute	cardinality	be	the	number	of	
distinct	values	present	in	a	dataset.	The	size	of	a	basic	bitmap	index	is	relatively	small	
for	low-cardinality	attributes,	such	as	“gender,”	“types	of	cars	sold	per	month,”	or	
“airplane	models	produced	by	Airbus	and	Boeing.”	However,	for	high-cardinality	
attributes	such	as	“temperature	values	in	a	supernova	explosion,”	the	index	sizes	
may	be	too	large	to	be	of	any	practical	use.	In	the	literature,	there	are	three	basic	
strategies	to	reduce	the	sizes	of	bitmap	indices:	(1)	using	more	complex	bitmap	
encoding methods to reduce the number of bitmaps or improve query efficiency,
(2)	compressing	each	individual	bitmap,	and	(3)	using	binning	or	other	mapping	
strategies	to	reduce	the	number	of	keys.	In	the	remaining	discussions,	we	refer	to	
these	three	strategies	as	encoding,	compression,	and	binning,	for	short.
	

Bitmap Indices for Data Warehouses �6�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Bitmap. Index.Design

Basic.Bitmap.Index

Bitmap indices are one of the most efficient indexing methods available for speed-
ing	up	multidimensional	range	queries	for	read-only	or	read-mostly	data	(O’Neil,	
1987;	Rotem,	Stockinger	&	Wu,	2005b;	Wu	et	al.,	2006).	The	queries	are	evaluated	
with	bitwise	logical	operations	that	are	well	supported	by	computer	hardware.	For	
an	attribute	with	c	distinct	values,	the	basic	bitmap	index	generates	c	bitmaps	with	
N	bits	each,	where	N	is	the	number	of	records	(rows)	in	the	dataset.	Each	bit	in	a	
bitmap is set to “1” if the attribute in the record is of a specific value; otherwise
the	bit	is	set	to	“0”.	Figure	1	shows	a	simple	bitmap	index	with	six	bitmaps.	Each	
bitmap	represents	a	distinct	attribute	value.	For	instance,	the	attribute	value	3	is	
highlighted	to	demonstrate	the	encoding.	In	this	case,	bitmap	3	is	set	to	“1”,	all	
other	bits	on	the	same	horizontal	position	are	set	to	“0”.

Encoding

The	basic	bitmap	index	introduced	is	also	called	equality-encoded	bitmap	index	
since	each	bitmap	 indicates	whether	or	not	an	attribute	value	equals	 to	 the	key.	
This strategy is the most efficient for equality queries such as “temperature = 100.”
Chan	and	Ioannidis	(1998,	1999)	developed	two	other	encoding	strategies	that	are	
called	range	encoding	and	interval	encoding.	These	bitmap	indices	are	optimized	
for	one-sided	and	two-sided	range	queries,	respectively.	An	example	of	a	one-sided	
range	query	is	“pressure	<	56.7”.	A	two-sided	range	query,	for	instance,	is	“35.8	<	
pressure	<	56.7”.

Figure 1. Simple bitmap index with six bitmaps to represent six distinct attribute
values

�62 Stockinger & Wu

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

A	comparison	of	an	equality-encoded	and	range-encoded	bitmap	index	is	given	in	
Figure	2	(based	on	Chan	&	Ioannidis,	1999).	Let	us	look	at	the	encoding	of	value	
2, which is highlighted in the figure. For equality encoding, the third bitmap is set
to	“1”	(E2),	whereas	all	other	bits	on	the	same	horizontal	line	are	set	to	“0”.	For	the	
range-encoded	bitmap	index,	all	bits	between	bitmap	R2	and	R8	are	set	to	“1”,	the	
remaining bits are set to “0”. This encoding is very efficient for evaluating range
queries.	Consider,	for	instance,	the	query	“A	<=	4”.	In	this	case,	at	most	one	bitmap,	
namely	bitmap	R4,	has	to	be	accessed	(scanned)	for	processing	the	query.	All	bits	
that are set to “1” in this bitmap fulfill the query constraint. On the other hand, for
the	equality-encoded	bitmap	index,	the	bitmaps	E0	to	E4	have	to	be	ORed	together	
(via	the	Boolean	operator	OR).	This	means	that	5	bitmaps	have	to	be	accessed,	as	
opposed	to	only	1	bitmap	for	the	case	of	range	encoding.	In	short,	range	encoding	
requires	at	most	one	bitmap	scan	for	evaluating	range	queries,	whereas	equality	
encoding	requires	in	the	worst	case	c/2	bitmap	scans,	where	c	corresponds	to	the	
number	of	bitmaps.	Since	one	bitmap	in	range	encoding	contains	only	“1”s,	this	
bitmap	is	usually	not	stored.	Therefore,	there	are	only	c-1	bitmaps	in	a	range-en-
coded	index.
 Assuming each attribute value fits in a 32-bit machine word, the basic bitmap index
for	an	attribute	with	cardinality	32	takes	as	much	space	as	the	base	data	(known	
as	user	data	or	original	data).	Since	a	B-tree	index	for	a	32-bit	attribute	is	often	
observed	to	use	three	or	four	times	the	space	as	the	base	data,	many	users	consider	
only	attributes	with	cardinalities	less	than	100	to	be	suitable	for	using	bitmap	in-
dices.	Clearly,	controlling	the	size	of	the	bitmap	indices	is	crucial	to	make	bitmap	
indices	practically	useful	for	higher	cardinality	attributes.	The	interval-encoding	
scheme	(Chan	&	Ioannidis,	1999)	reduces	the	number	of	bitmaps	only	by	a	fac-
tor	2.	Thus,	other	techniques	are	needed	to	make	bitmap	indices	practical	for	high	
cardinality	attributes.

Figure 2. Equality-encoded bitmap index (b) compared with range-encoded bitmap
index (c). The leftmost column shows the row ids (RID) for the data values repre-
sented by the projection index shown in (a).

Bitmap Indices for Data Warehouses �6�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

The	encoding	method	that	produces	the	least	number	of	bitmaps	is	binary	encoding	
introduced	by	Wong	et	al.	(1985).	Binary	encoding	was	later	used	by	various	authors	
(O’Neil	&	Quass,	1997;	Wu	&	Buchmann,	1998)	in	the	context	of	bitmap	indices.	
This	encoding	method	uses	only			rather	than	c/2	bitmaps,	where	c	is	the	attribute	
cardinality.	For	an	integer	attribute	in	the	range	of	0	and	c-1,	each	bitmap	in	the	
bitmap	index	is	a	concatenation	of	one	of	the			binary	digits	for	every	record.	For	
an	attribute	with	c=1000,	it	only	needs	10	bitmaps.	The	advantage	of	this	encoding	
is	that	it	requires	much	fewer	bitmaps	than	interval	encoding.	However,	to	answer	
a	range	query,	using	interval	encoding	one	has	to	access	only	two	bitmaps	whereas	
using	binary	encoding	one	usually	has	to	access	all	bitmaps.
A number of authors have proposed strategies to find the balance between the space
and	 time	 requirements	 (Chan	&	Ioannidis,	1999;	Wong	et	al.,	1985).	A	method	
proposed	by	Chan	and	Ioannidis	(1999)	called	multicomponent	encoding	can	be	
thought	of	as	a	generalization	of	binary	encoding.	 In	 the	binary	encoding,	each	
bitmap	represents	a	binary	digit	of	the	attribute	values;	the	multicomponent	encod-
ing	breaks	the	values	in	a	more	general	way,	where	each	component	could	have	a	
different	size.	Consider	an	integer	attribute	with	values	ranging	from	0	to	c-1.	Let	
b1	and	b2	be	the	sizes	of	two	components	c1	and	c2,	where	b1*b2>=c.	Any	value	
v can be expressed as v = c1*b2+c2, where c1 = v / b2 and c2 = v % b2, where ‘/’
denotes the integer division and ‘%’ denotes the modulus operation. One can use a
simple	bitmap	encoding	method	to	encode	the	values	of	c1	and	c2	separately.	Next,	
we give a more specific example to illustrate the multicomponent encoding.
Figure	3	illustrates	a	2-component	encoded	bitmap	index	for	an	attribute	with	car-
dinality	c	=	1000.	In	our	example,	the	two	components	have	base	sizes	of	b1	=	25	
and	b2	=	40.	Assume	the	attribute	values	are	in	the	domain	of	[0;	999].	An	attribute	
value	v	is	decomposed	into	two	components	with	c1	=	v	/	40	and	c2	=	v	%	40.	
The	component	c1	can	be	treated	as	an	integer	attribute	in	the	range	of	0	and	24;	
the	component	c2	can	be	viewed	as	an	integer	attribute	in	the	range	of	0	and	39.	
Two	bitmap	indices	can	be	built,	one	for	each	component,	for	example,	c1	with	the	
equality	encoding	and	c2	with	range	encoding.	If	range	encoding	is	used	for	both	
components,	it	uses	24	bitmaps	for	Component	1,	and	39	bitmaps	for	Component	
2.	In	this	case,	the	2-component	encoding	uses	63	bitmaps,	which	is	more	than	the	
10	bitmaps	used	by	binary	encoding.	To	answer	the	same	query	“v	<	105”	using	
the	2-component	index,	the	query	is	effectively	translated	to	“c1<2	OR	(c1=2	AND	

Component	1	
b1	=	25	

c
1 <=0	

c
1 <=1	

c
1 <=2	

…	 c
1 <=23	

	

Component	2	
b2	=	40	

c
2 <=0	

c
2 <=1	

c
2 <=2	

…	 c2 <=38	

	

Figure 3. An illustration of a 2-component bitmap index

�64 Stockinger & Wu

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

c2<25).”	Evaluating	this	expression	requires	three	bitmaps	representing	“c1<=1,”	
“c1<=2,”	 and	“c2<=24.”	 In	 contrast,	 using	 the	binary	 encoded	bitmap	 index	 to	
evaluate	the	same	query,	all	10	bitmaps	are	needed.
Using	more	components	can	reduce	the	number	of	bitmaps	and	therefore	reduces	
the	total	index	size.	However,	using	more	components	will	also	increase	the	number	
of	bitmaps	accessed	in	order	to	answer	a	query,	hence	increasing	the	query	response	
time.	Clearly,	there	is	a	trade-off	between	the	index	size	and	the	query	response	
time.	Without	considering	compression,	Chan	and	Ioannidis	(1999)	have	analyzed	
this space-time trade-off. They suggested that the inflection point of the trade-off
curve	is	at	two	components.	They	further	suggested	that	the	two	components	should	
have	nearly	the	same	base	sizes	to	reduce	the	index	size.

Binning

The	simplest	form	of	bitmap	indices	works	well	for	low-cardinality	attributes,	such	
as	“gender,”	“types	of	cars	sold	per	month,”	or	“airplane	models	produced	by	Airbus	
and	Boeing.”	However,	for	high-cardinality	attributes	such	as	“distinct	temperature	
values	 in	 a	 supernova	explosion,”	 simple	bitmap	 indices	 are	 impractical	due	 to	
large	storage	and	computational	complexities.	We	have	just	discussed	how	different	
encoding	methods	could	reduce	the	index	size	and	improve	query	response	time.	
Next,	we	describe	a	strategy	called	binning	to	reduce	the	number	of	bitmaps.	Since	
the	encoding	methods	described	before	only	take	certain	integer	values	as	input,	
we	may	also	view	binning	as	a	way	to	produce	these	integer	values	(bin	numbers)	
for	the	encoding	strategies.
The	basic	idea	of	binning	is	to	build	a	bitmap	for	a	bin	rather	than	each	distinct	at-
tribute	value.	This	strategy	disassociates	the	number	of	bitmaps	from	the	attribute	
cardinality	and	allows	one	to	build	a	bitmap	index	of	a	prescribed	size,	no	matter	
how	large	the	attribute	cardinality	is.	A	clear	advantage	of	this	approach	is	that	it	
allows	one	to	control	the	index	size.	However,	it	also	introduces	some	uncertainty	
in	the	answers	if	one	only	uses	the	index.	To	generate	precise	answers,	one	may	
need	 to	 examine	 the	 original	 data	 records	 (candidates)	 to	 verify	 that	 the	 user-
specified conditions are satisfied. The process of reading the base data to verify the
query	conditions	is	called	candidate	check	(Rotem	et	al.,	2005b;	Stockinger,	Wu,	
&	Shoshani,	2004).	
A	small	 example	of	an	equality-encoded	bitmap	 index	with	binning	 is	given	 in	
Figure	4.	In	this	example	we	assume	that	an	attribute	A	has	values	between	0	and	
100.	The	values	of	the	attribute	A	are	given	in	the	second	leftmost	column.	The	
range of possible values of A is partitioned into five bins [0, 20), [20, 40).... A “1-
bit” indicates that the attribute value falls into a specific bin. On the contrary, a
“0-bit” indicates that the attribute value does not fall into the specific bin. Take the
example	of	evaluating	the	query	“Count	the	number	of	rows	where	37	<=	A	<	63.”	

Bitmap Indices for Data Warehouses �6�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

The	correct	result	should	be	2	(rows	5	and	7).	We	see	that	the	range	in	the	query	
overlaps	with	bins	1,	2,	and	3.	We	know	for	sure	that	all	rows	that	fall	into	bin	2	
definitely qualify (i.e., they are hits). On the other hand, rows that fall into bins 1
and 3 possibly qualify and need further verification. In this case, we call bins 1 and
3	edge	bins.	The	rows	(records)	that	fall	into	edge	bins	are	candidates	and	need	to	
be	checked	against	the	query	constraint.	
In	our	example,	there	are	four	candidates,	namely	rows	1	and	3	from	bin	1,	and	rows	
5	and	6	from	bin	3.	The	candidate	check	process	needs	to	read	these	four	rows	from	
disk and examine their values to see whether or not they satisfy the user-specified
conditions.	On	a	large	dataset,	a	candidate	check	may	need	to	read	many	pages	and	
may	dominate	the	overall	query	response	time	(Rotem	et	al.,	2005b).
There	are	a	number	of	strategies	to	minimize	the	time	required	for	the	candidate	
check	(Koudas,	2000;	Rotem	et	al.,	2005a,	2005b;	Stockinger	et	al.,	2004).	Kou-
das (2000) considered the problem of finding the optimal binning for a given set of
equality queries. Rotem et al. (2005a, 2005b) considered the problem of finding the
optimal	binning	for	range	queries.	Their	approaches	are	based	on	dynamic	program-
ming.	Since	the	time	required	by	the	dynamic	programming	grows	quadratic	with	
the problem size, these approaches are only efficient for attributes with relatively
small	attribute	cardinalities	(Koudas,	2000)	or	with	relatively	small	sets	of	known	
queries	(Stockinger	et	al.,	2004).	Stockinger	et	al.	(2004)	considered	the	problem	
of	optimizing	the	order	of	evaluating	multidimensional	range	queries.	The	key	idea	
is	to	use	more	operations	on	bitmaps	to	reduce	the	number	of	candidates	checked.	
This	approach	usually	reduces	the	total	query	response	time.	Further	improvements	
to this approach are to consider the attribute distribution and other factors that influ-
ence	the	actual	time	required	for	the	candidate	check.

Figure 4. Range query “37 <= A < 63” on a bitmap index with binning

�66 Stockinger & Wu

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

To	minimize	number	of	disk	page	accesses	during	the	candidate	check,	it	is	necessary	
to	cluster	the	attribute	values.	A	commonly	used	clustering	(data	layout)	technique	is	
called	the	vertical	partition	or	otherwise	known	as	projection	index.	In	general,	the	
vertical data layout is more efficient for searching, while the horizontal organization
(commonly used in DBMS) is more efficient for updating. To make the candidate
check more efficient, we recommend the vertical data organization.

Compression

Compression	is	the	third	strategy	to	reduce	the	size	of	bitmap	indices.	Since	each	
bitmap	of	the	bitmap	index	may	be	used	separately	from	others,	compression	is	
typically	applied	on	each	individual	bitmap.	Compression	is	a	well-researched	topic	
and efficient compression software packages are widely available. Even though
these	general-purpose	compression	methods	are	effective	in	reducing	the	size	of	
bitmaps,	query-processing	operations	on	compressed	bitmaps	are	often	slower	than	
on	uncompressed	bitmaps	(Johnson,	1999).	This	motivated	a	number	of	researchers	
to improve the efficiency of compressed bitmap indices. Two of the most notable
compression	methods	are	byte-aligned	bitmap	code	(BBC)	(Antoshenkov,	1994;	
Antoshenkov	&	Ziauddin,	1996)	and	word-aligned	hybrid	(WAH)	code	(Wu	et	al.,	
2004,	2006).	Bitmaps	compressed	with	BBC	are	slightly	larger	in	size	than	those	
compressed	with	the	best	available	general-purpose	compression	methods.	However,	
operations	on	BBC	compressed	bitmaps	are	usually	faster	(Johnson,	1999).	Clearly,	
there	is	a	worthwhile	space-time	trade-off.	The	WAH	compression	takes	this	space-
time trade-off one step further. More specifically, WAH compressed bitmaps are
larger	than	BBC	compressed	ones,	but	operations	on	WAH	compressed	bitmaps	are	
much	faster	than	on	BBC	compressed	ones.	Therefore,	WAH	compressed	bitmap	
indices	can	answer	queries	much	faster	as	demonstrated	in	a	number	of	different	
experiments	(Stockinger	et	al.,	2002;	Wu	et	al.,	2006).	In	the	next	section	we	provide	
a	detailed	description	of	the	WAH	compression.	For	more	information	on	BBC,	we	
refer	the	reader	to	Antoshenkov	(1994)	and	Antoshenkov	&	Ziauddin	(1996).

WAH.Bitmap.Compression

The	WAH	bitmap	compression	is	based	on	run-length	encoding,	where	consecutive	
identical	bits	are	represented	with	their	bit	value	(0	or	1)	and	a	count	(length	of	the	
run). In WAH each such run consists of a fill and a tail. A fill is a set of consecu-
tive	identical	bits	that	is	represented	as	a	count	plus	their	bit	value.	A	tail	is	a	set	of	
mixed	0s	and	1s	that	is	represented	literally	without	compression.	One	key	idea	of	

Bitmap Indices for Data Warehouses �6�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

WAH is to define the fills and tails so that they can be stored in words – the small-
est	operational	unit	of	modern	computer	hardware.
The	WAH	compression	is	illustrated	in	Figure	5.	Assuming	that	a	machine	word	is	
32	bits	long,	the	example	shows	how	a	sequence	of	5456	bits	(see	Figure	5(a))	is	
broken	into	two	runs	and	encoded	as	three	words.	Conceptually,	the	bit	sequence	
is first broken into groups of 31 bits each (see Figure 5(b)). Next, the neighbor-
ing	groups	with	identical	bits	are	merged	(Figure	5(c)).	Finally,	these	three	groups	
are encoded as 32-bit machine words (Figure 5(d)). The first run contains a fill of
length 0 and a tail. There is no fill word but only a literal word representing the 31
tail bits for this run. Since a literal word has 32 bits, we use the first bit to indicate
it	is	a	literal	word,	and	the	rest	to	store	the	31	tail	bits.	The	second	run	contains	a	
fill of length 174 (and thus represents 174 groups of 31 bits each) plus a tail. This
run requires a fill word and a tail word. As illustrated, the first bit of a fill word
indicates that it is a fill word, the second bit stores the bit value of the fill, which is
0 in this example. The remaining 30 bits store the binary version of the fill length,
which	is	10101110	(174)	in	this	example.

Figure 5. An example of WAH encoding of a sequence of 5456 bits on a 32-bit
machine

.

	

10000000000000000000011100000000000000000000000……………….0000000000000001111111111111111111111111

a) Input bitmap with 5456 bits

01000

B it 0 indicates “tail” word

100…010101110 001…11

b) G roup bits into 176 31-bit groups

d) E ncode each group us ing one word

31 bits 174*31 bits 31 bits

31 bits 31 bits … 31 bits

c) Merge neighboring groups with identical bits

31	literal	bits	
run	length	is	174	

Run	1	 Run	2	

 B it 0 indicates “tail” word

31	literal	bits	Fill	bit	0	

�68 Stockinger & Wu

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

In	theoretical	analysis,	the	query	response	time	on	one-dimensional	range	queries	
using	WAH	compressed	indices	was	shown	to	grow	linearly	in	the	number	of	hits.	
This	time	complexity	is	optimal	for	any	searching	algorithm	since	one	has	to	return	
at least the hits, which takes Ω(h) time (where h is the number of hits). A variety of
well-known	indexing	methods	such	as	B+-trees	and	B*-trees	have	the	same	optimal	
scaling	property.	However,	compressed	bitmap	indices	have	the	unique	advantage	
that	they	can	be	easily	combined	to	answer	multidimensional	ad	hoc	range	queries,	
while B+-trees or B*-trees cannot be combined nearly as efficiently.
In	general,	 the	query	response	time	can	be	broken	into	I/O	time	and	CPU	time.	
Since	WAH	compressed	bitmaps	are	larger	in	size	than	BBC	compressed	bitmaps,	
we	would	expect	that	WAH	require	more	I/O	time	to	read	compressed	bitmaps.	For	
many	database	operations,	the	CPU	time	is	negligible	compared	with	the	I/O	time.	
It	turns	out	that	this	is	not	the	case	when	answering	queries	with	compressed	bit-
map	indices.	In	a	performance	experiment	Stockinger	et	al.	(2002)	compared	WAH	
compressed	 indices	with	 two	 independent	 implementations	of	BBC	compressed	
indices,	one	based	on	Johnson’s	(1999)	code	and	the	other	by	Wu	et	al.	(2002).	The	
results	showed	that	the	total	query	response	time	was	smaller	with	WAH	compressed	
bitmap	indices	than	with	BBC	compressed	bitmaps,	even	on	a	relatively	slow	disk	
system that can only sustain 5 MB/s for reading files from disk. On faster disk sys-
tems,	the	performance	advantage	of	WAH	compressed	bitmap	indices	is	even	more	
pronounced.	Using	WAH	could	be	10	times	faster	than	using	BBC.	

Bitmap. Index.Tuning

Unless	one	uses	binary	encoding,	it	is	important	to	compress	the	bitmap	indices.	To	
build an efficient compressed bitmap index, the three main parameters to consider
are:	(1)	encoding,	(2)	number	of	bins,	and	(3)	binning	strategy.	In	the	following	we	
present	a	rule-of-thumb	for	choosing	these	three	parameters.
The	optimal	bitmap	encoding	technique	depends	on	the	kind	of	queries	that	are	
evaluated.	Chan	and	Ioannidis	(1999)	showed	that	range	encoding	is	the	best	bitmap	
encoding	technique	for	range-queries.	However,	range	encoding	might	not	always	
be	practical	for	high-cardinality	attributes	or	for	a	large	number	of	bins.	As	we	will	
show	in	the	next	section,	range-encoded	bitmap	indices	do	not	compress	as	well	as	
equality-encoded	bitmap	indices.
The	general	rule	for	choosing	the	number	of	bins	is	as	follows:	The	more	bins,	the	
less	work	during	the	candidate	check.	The	reason	is	fairly	straightforward.	In	gen-
eral,	as	the	number	of	bins	increases,	the	number	of	candidates	per	bin	decreases.	
Let	us	consider	the	following	example.	Assume	the	base	data	follows	a	uniform	
random	distribution.	With	a	typical	page	size	of	8KB,	using	the	projection	index,	

Bitmap Indices for Data Warehouses �6�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

a	page	could	hold	2048	4-byte	words.	If	one	in	1000	words	is	accessed	during	the	
candidate	check,	it	is	likely	that	every	page	containing	the	attribute	values	would	
be	touched	(Stockinger	et	al.,	2004).	We,	thus,	suggest	using	1000	bins	or	more.	
For	equality	encoding	there	is	an	additional	trade-off,	namely	using	more	bins	may	
also	increase	the	cost	of	the	index	scan.	For	range	encoding	the	cost	of	the	index	scan	
is not significantly affected by the number of bins because one needs to access no
more	than	two	bitmaps	to	evaluate	a	range	query	(Chan	&	Ioannidis,	1999).	Without	
compression,	one	would	clearly	favor	range	encoding.	However,	with	compression,	
the	relative	strength	is	not	as	obvious.	With	a	WAH	compressed	equality-encoded	
index,	it	was	shown	that	the	cost	of	the	index	scan	is	proportional	to	the	number	of	
hits,	independent	of	the	number	of	bitmaps	involved	(Wu	et	al.,	2006).	Because	the	
equality-encoded	indices	are	much	easier	to	compress,	this	could	make	the	WAH	
compressed	equality-encoded	index	a	preferred	choice.
Finally,	the	binning	strategy	has	an	impact	on	the	candidate	check.	The	simplest	
kind	of	binning,	called	equi-width	binning,	partitions	the	domain	of	the	indexed	
attribute	into	bins	of	equal	size.	As	a	result,	each	bin	might	have	a	different	number	
of	entries.	Equi-depth	binning,	on	the	other	hand,	distributes	the	number	of	entries	
equally	among	the	bins.	This	technique	has	a	better	worst-case	behavior	than	equi-
width	binning	but	is	more	costly	to	build	because	one	typically	has	to	scan	the	data	
first to generate the exact histogram before starting with the binning.
One	approach	to	reduce	the	cost	of	building	a	set	of	equi-depth	bins	is	 to	use	a	
sampled histogram instead of the exact histogram. Another approach is to first
build	an	equi-width	binned	index	with	more	bins	than	desired,	and	then	combine	
the	neighboring	bins	to	form	approximate	equi-depth	bins.	However,	the	second	
approach	might	not	produce	well-balanced	bins.	For	example,	the	attribute	mass	
fraction	from	a	supernova	simulation	is	expected	to	be	in	the	range	of	0	and	1.	If,	
for	some	reason,	the	mass	fraction	is	not	known,	scientists	typically	enter	the	value	
-999	to	represent	a	bad	or	missing	value.	In	this	example,	equi-width	binning	would	
produce	bins	starting	from	-999.	This	results	in	too	many	empty	bins	and	thus	cannot	
be	combined	to	produce	well-balanced	equi-depth	bins.	In	contrast,	the	approach	
of	sampled	histograms	is	generally	more	reliable	in	detecting	this	type	of	unusual	
outliers	and	typically	produces	well-balanced	bins.

Space.Complexity:.........................
Sizes of Compressed Bitmap Indices

The	space	complexity	of	uncompressed	bitmap	indices	was	studied	in	Chan	and	
Ioannidis	(1998,	1999).	In	this	section,	we	analyze	the	size	of	compressed	bitmap	
indices.	Our	discussion	mainly	focuses	on	the	WAH	compression	method	since	BBC	

��0 Stockinger & Wu

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

compression	was	extensively	studied	in	Johnson	(1999).	We	give	an	upper	bound	
of	the	worst-case	size	and	provide	an	experimental	study	of	compressed	bitmap	
indices	for	various	application	datasets.	

Index Size: Worst-Case Behavior

In the previous section we defined a WAH run to be a fill followed by a tail. To
make	the	discussion	more	concrete,	let	us	assume	that	a	machine	word	is	32	bits.	
In	this	case,	a	WAH	tail	contains	exactly	31	bits	from	the	input	bitmap	and	a	WAH	
fill contains a multiple of 31 bits that are all the same (either 0 or 1). Because the
bitmap index is known to be efficient for low cardinality attributes, we further re-
strict	our	discussion	to	high	cardinality	attributes	only,	say,	c	>	100.	In	an	equality-
encoded	bitmap	index,	there	are	c	keys	(distinct	values	of	the	attribute)	and	thus	
c	bitmaps.	We	do	not	know	exactly	how	many	bits	are	set	to	1	in	each	individual	
bitmap.	However,	we	know	that	the	total	number	of	bits	that	are	1	is	exactly	N	(the	
number	of	rows	in	the	dataset).	In	the	worst	case,	there	are	(N+c)	WAH	runs	in	the	
bitmaps,	where	N	refers	to	maximum	number	of	tail	words	(each	containing	a	single	
bit	set	to	1)	and	c	refers	to	the	maximum	number	of	runs	at	the	end	of	each	bitmap	
that	are	not	terminated	with	a	tail	word.	Each	WAH	run	is	encoded	by	two	machine	
words.	Therefore,	we	need	a	total	of	2(N+c)	words	to	represent	the	bitmaps.	Assum-
ing	each	key	is	encoded	by	one	word	along	with	one	additional	word	to	associate	
the	key	with	the	bitmap,	the	total	index	size	is	2N+4c	words.	In	most	cases,	the	at-
tribute	cardinality	c	is	much	smaller	than	N.	In	these	cases,	the	WAH	compressed	
equality-encoded	bitmap	index	size	is	at	worst	2N	words.	With	binning,	one	may	

Figure 6. Size of base data compared with bitmap indices

Note: EE = equality encoding; RE = range encoding; lit = literal (no compression); comp = with compression

�.E+0�

�.E+08

�.E+0�

�.E+�0

base data EE-�000-lit EE-�000-
comp

RE-�00-lit RE-�00-
comp

Base data and indices for combustion data set

Si
ze

 [b
yt

es
]

Bitmap Indices for Data Warehouses ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

use	many	thousands	of	bins	and	the	maximum	index	size	would	still	be	no	more	
than	2N.	Since	a	number	of	commercial	implementations	of	B-trees	are	observed	to	
use	3N	to	4N	words,	the	maximum	size	of	compressed	bitmap	indices	is	relatively	
modest.	As	we	will	show	for	real	application	data,	the	WAH	compressed	index	is	
often	much	smaller	than	the	predicted	worst-case	sizes.
For	WAH	compression,	in	the	worst	case,	about	90%	of	the	bitmaps	in	a	range-
encoded	bitmap	index	will	not	be	compressible	(Wu	et	al.,	2006).	Unless	one	can	
tolerate	very	large	indices	or	one	knows	beforehand	that	compression	would	be	
effective,	we	generally	recommend	using	no	more	than	100	bins	for	range-encode	
bitmap	indices.	This	guarantees	that	the	size	of	the	bitmap	index	is	at	worst	the	
size	of	a	B-tree.

Index Size for Real Application Datasets

We	will	now	analyze	experimentally	 the	 size	of	compressed	bitmap	 indices	 for	
various	application	datasets.

Combustion Dataset

The	 combustion	 dataset	 is	 from	 a	 simulation	 of	 the	 auto-ignition	 of	 turbulent	
Hydrogen-air	mixture	from	the	TeraScale	High-Fidelity	Simulation	of	Turbulent	
Combustion	with	Detailed	Chemistry	(Tera	Scale	Combustion,	2005).	The	dataset	
consists	of	24	million	 records	with	16	attributes	each.	For	 this	dataset	we	built	
equality-encoded	and	range-encoded	bitmap	indices	with	various	numbers	of	equi-
depth	bins.	Figure	6	shows	the	average	size	of	the	compressed	bitmap	indices	per	
attribute.	We	can	see	that	equality-encoded	bitmap	indices	with	1000	bins	and	the	
range-encoded	bitmap	indices	with	100	bins	have	about	the	same	size	as	the	base	
data.	Note	that	the	size	of	an	uncompressed	bitmap	index	with	100	bins	is	about	3	
times	as	large	as	the	base	data.	With	1000	bins,	the	size	of	the	uncompressed	bitmap	
index	is	about	30	times	larger.	This	shows	that	the	WAH	compression	algorithm	
works	well	on	this	dataset.

High-Energy Physics Dataset

Our	second	dataset	is	from	a	high-energy	physics	experiment	at	the	Stanford	Lin-
ear	Accelerator	Center.	It	consists	of	7.6	million	records	with	10	attributes.	Figure	
7	shows	the	size	of	the	compressed	bitmap	indices.	We	notice	that	the	size	of	the	
range-encoded	bitmap	index	with	100	bins	is	about	twice	as	large	as	the	base	data.	
The	equality-encoded	bitmap	index	with	1000	bins	is	about	30%	smaller	than	the	

��2 Stockinger & Wu

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

base	data.	Typically,	the	records	from	these	high-energy	physics	experiments	are	
not	correlated	with	each	other.	Thus,	it	is	generally	hard	for	the	run-length	encoding	
to	be	effective.	This	is	why	the	index	sizes	for	range	encoding	are	relatively	large	
compared	with	the	previous	datasets.	However,	equality	encoding	compresses	very	
well	for	this	physics	dataset.
Overall,	we	see	that	the	actual	bitmap	index	sizes	are	considerably	smaller	than	the	
base	data	sizes	and	less	than	the	sizes	of	typical	commercial	implementations	of	
B-trees	(that	are	often	three	to	four	times	the	size	of	the	base	data).

Time.Complexity:.Query.Response.Time

In	this	section	we	are	focusing	on	the	two	basic	encoding	methods,	namely	equality	
encoding	and	range	encoding.	We	have	chosen	these	two	encoding	methods	for	the	
following reason. Equality encoding showed to be the most space efficient method.
Range encoding, on the other hand, is the most time efficient method for one-sided
range	queries	(Chan	&	Ioannidis,	1998)	that	we	use	in	our	experiments.	
Analyses	have	shown	that	 the	worst	case	query	response	 time	to	answer	a	one-
dimensional	range	query	using	a	WAH	compressed	basic	bitmap	index	(equality-
encoded	without	binning)	is	a	linear	function	of	the	number	hits	(Wu	et	al.,	2006).	
The	analyses	also	indicate	that	the	worst-case	behavior	is	for	attributes	following	

�.E+0�

�.E+08

�.E+0�

Base data EE-�000-lit EE-�000-
comp

RE-�00-lit RE-�00-
comp

Base data and indices for high-energy physics data set

Si
ze

 [b
yt

es
]

Note: For an explanation of the legend, see Figure 6.

Figure 7. Size of base data compared with bitmap indices

Bitmap Indices for Data Warehouses ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

a	uniform	random	distribution.	Figure	8	plots	the	query	response	time	against	the	
number	of	hits	for	a	set	of	queries	on	two	attributes	with	different	attribute	cardinali-
ties.	The	data	values	for	the	two	attributes	are	randomly	distributed	in	the	range	of	
[0;100]	and	[0;	10,000]	respectively.	We	see	that	in	both	cases	the	timing	measure-
ments	follow	straight	lines,	which	is	theoretically	optimal.
In	the	remainder	of	this	section	we	present	more	timing	measurements	to	compare	
the	query	response	time	of	equality-encoded	and	range-encoded	bitmap	indices.	
All	indices	are	compressed	with	WAH	compression.	Since	the	results	for	the	two	
datasets	are	similar,	we	only	report	on	the	measurements	based	on	the	larger	and	
thus	more	challenging	combustion	dataset.	We	use	the	projection	index	as	the	base	
line	for	all	the	comparisons.	We	note	that	this	is	a	good	base	line	since	the	projec-
tion	index	is	known	for	outperforming	many	multidimensional	indices.	
In	the	next	set	of	experiments	we	measure	the	query	size	with	the	query	box	size.	A	
query	box	is	a	hypercube	formed	by	the	boundaries	of	the	range	conditions	in	the	
attribute	domains.	We	measure	the	query	box	size	as	the	fraction	of	the	query	box	
volume	to	the	total	volume	of	the	attribute	domains.	If	all	attributes	have	uniform	
distribution,	then	a	query	box	size	of	0.01	indicates	that	the	query	would	select	1%	
of	the	dataset.	We	say	a	query	is	more	selective	if	the	query	box	size	is	smaller.
Figure	9	shows	the	response	time	(in	seconds)	for	2-	and	10-dimensional	queries	with	
various	query	box	sizes.	For	all	experiments	the	query	box	size	was	chosen	randomly	
and	covers	the	whole	domain	range.	In	general,	we	see	that	the	query	processing	
time	for	the	bitmap	indices	decreases	as	the	queries	become	more	selective.	On	the	

Figure 8. Time (in seconds) to answer a one-dimensional range query using a WAH
compressed bitmap index is a linear function of the number of hits

��4 Stockinger & Wu

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

other	hand,	the	query	processing	time	for	the	projection	index	stays	constant	as	the	
selectivity	changes.	For	all	query	dimensions	the	range-encoded	bitmap	index	with	
100	bins	shows	the	best	performance	characteristics,	however,	sometimes	at	the	cost	
of	a	larger	index.	In	case	the	storage	space	is	a	limiting	factor,	it	is	better	to	choose	
equality-encoded	bitmap	indices	with	1000	bins	(see	Figure	7).	As	we	can	see	in	
Figure	9,	the	performance	of	equality-encoded bitmap indices is not significantly
different	from	the	performance	of	range-encoded	bitmap	indices.
	

Key Features in Commercial Products

Due	to	the	considerable	amount	of	work	involved	in	producing	and	maintaining	a	
robust commercial software system, only the most efficient and proven indexing

Figure 9. Multidimensional queries with various bitmap indices. EE-1000: equality
encoding with 1000 bins, RE-100: range encoding with 100 bins

0.�

�

�0

0.� 0.� 0.0� 0.00� 0.000� 0.0000�

a) Query box size of 2D queries

Ti
m

e
[s

ec
]

Project�on Index EE-�000 RE-�00

0.�

�

�0

�00

0.� 0.� 0.0� 0.00� 0.000� 0.0000�

b) Query box size of 10D queries

Ti
m

e
[s

ec
]

Project�on Index EE-�000 RE-�00

Bitmap Indices for Data Warehouses ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

technologies	make	their	way	into	a	commercial	DBMS.	In	this	section,	we	give	
a	short	review	of	the	key	bitmap	indexing	technologies	currently	used	by	various	
well-known	commercial	products.	This	is	not	meant	to	be	an	exhaustive	survey.	
Our	main	interest	is	to	see	what	kind	of	bitmap	indexing	technology	is	missing	and	
which	technology	may	likely	make	an	impact	on	commercial	products.
The first commercial product to use the name bitmap index is Model 204. O’Neil
(1987)	has	published	a	description	of	the	indexing	method.	Model	204	implements	
the	basic	bitmap	index.	It	has	no	binning	or	compression.	Currently,	Model	204	is	
marketed	by	Computer	Corporation	of	America.	Oracle	has	a	version	of	compressed	
bitmap indices in its flagship product since version 7.3. They implemented a pro-
prietary	compression	method.	Based	on	the	observed	performance	characteristics,	
it	appears	to	use	equality	encoding	without	binning.
Sybase	IQ	implements	the	bit-sliced	index	(O’Neil	&	Quass,	1997).	Using	the	ter-
minology defined in the second and third sections, Sybase IQ supports unbinned,
binary	encoded,	uncompressed	bitmap	 indices.	 In	addition,	 it	also	has	 the	basic	
bitmap	index	for	low-cardinality	attributes.	IBM	DB2	implements	a	variation	of	the	
binary	encoded	bitmap	index	called	Encode	Vector	Index.	IBM	Informix	products	
also	contain	some	versions	of	bitmap	indices	for	queries	involving	one	or	more	
tables. These indices are specifically designed to speed up join-operations and are
commonly	referred	to	as	join	indices	(O’Neil	&	Quass,	1997).	InterSystems	Corp’s	
Cache	also	has	bitmap	index	support	since	version	5.0.
Even	though	we	do	not	have	technical	details	on	most	of	these	commercial	prod-
ucts,	it	is	generally	clear	that	they	tend	to	use	either	the	basic	bitmap	index	or	the	
bit-sliced	index.	Strategies	like	binning	and	multicomponent	encoding	are	not	used	
partly	because	there	is	no	robust	strategy	to	select	parameters	like	the	number	of	
bins	or	the	number	of	components	that	suits	different	applications.

Summary and Open Problems

In	this	chapter,	we	reviewed	a	number	of	recent	developments	in	the	area	of	bitmap	
indexing	technology.	We	organized	much	of	the	research	work	under	the	three	or-
thogonal	categories	of	encoding,	compression,	and	binning.	We	also	provided	a	brief	
overview	of	commercial	bitmap	index	implementations	by	major	vendors.
Most of the indexing methods reviewed were designed to efficiently answer mul-
tidimensional range queries. However, they are also efficient for other types of
queries,	such	as	joins	on	foreign	keys	and	computations	of	aggregates	(O’Neil	&	
Quass,	1997).	
Despite	the	success	of	bitmap	indices,	there	are	a	number	of	important	questions	that	
remain to be addressed. For example, is there an efficient bitmap index for similar-

��6 Stockinger & Wu

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

ity	queries?	How	can	we	automatically	select	the	best	combination	of	encoding,	
compression	and	binning	techniques?	How	can	we	use	bitmap	indices	to	answer	
more	general	join	queries?
Research	work	on	bitmap	indices	so	far	has	concentrated	on	answering	queries	ef-
ficiently, but has often neglected the issue of updating the indices. Clearly, there
is a need to update the indices as new records are added. Efficient solutions to this
issue	could	be	the	key	to	gain	a	wider	adaptation	of	bitmap	indices	in	commercial	
applications.

References

Antoshenkov,	G.	(1994).	Byte-aligned bitmap compression (Tech.	Rep.,	U.S.	Patent	
number	5,363,098).	Oracle	Corp.

Antoshenkov,	G.,	&	Ziauddin,	M.	(1996).	Query	processing	and	optimization	in	
ORACLE	RDB.	VLDB Journal, 5,	229-237.

Berchtold,	S.,	Boehm,	C.,	&	Kriegl,	H.-P.	(1998).	The	pyramid-technique:	Towards	
breaking	the	curse	of	dimensionality.	SIGMOD Record, 27(2),	142-153.

Chan,	C.-Y.,	&	Ioannidis,	Y.	E.	(1998,	June).	Bitmap	index	design	and	evaluation.	
International Conference on Management of Data, SIGMOD,	Seattle,	Wash-
ington	(pp.	355-366).	ACM	Press.

Chan, C.-Y., & Ioannidis, Y. E. (1999, June). An efficient bitmap encoding scheme
for	selection	queries.	International Conference on Management of Data, SIG-
MOD,	Philadelphia	(pp.	215-226).	ACM	Press.

Chaudhuri,	S.,	&	Dayal,	U.	(1997).	An	overview	of	data	warehousing	and	OLAP	
technology.	ACM SIGMOD Record, 26(1),	65-74.

Chaudhuri,	S.,	Dayal,	U.,	&	Ganti,	V.	(2001).	Database	technology	for	decision	
support	systems.	Computer, 34(12),	48-55.

Comer,	D.	(1979).	The	ubiquitous	B-tree.	Computing Surveys, 11(2),	121-137.
FastBit.	(2005).	Retrieved	May	31,	2006,	from	http://sdm.lbl.gov/fastbit
Gaede,	V.,	&	Guenther,	O.	(1998).	Multidimensional	access	methods.	ACM Com-

puting Surveys, 30(2),	170-231.
Johnson,	T.	(1999,	September).	Performance	measurements	of	compressed	bitmap	

indices.	In	International Conference on Very Large Data Bases (VLDB),	Ed-
inburgh,	Scotland	(pp.	278-289).	Morgan	Kaufmann.

Keim,	D.,	&	Hinneburg,	A.	(1999,	September).	Optimal	grid-clustering:	Towards	
breaking	the	curse	of	dimensionality	in	high-dimensional	clustering.	In	Pro-

Bitmap Indices for Data Warehouses ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

ceedings of the International Conference on Very Large Data Bases (VLDB),
San	Francisco	(pp.	506-517).	Morgan	Kaufmann.

Kiyoki,	Y.,	Tanaka,	K.,	Aiso,	H.,	&	Kamibayashi,	N.	(1981,	May).	Design	and	evalu-
ation	of	a	relational	data	base	machine	employing	advanced	data	structures	
and	algorithms.	Paper	presented	at	the	Symposium on Computer Architecture,	
Los	Alamitos,	California	(pp.	407-423).	IEEE	Computer	Society	Press.

Knuth,	D.	E.	(1998).	The art of computer programming	(vol.	3).	Addison-Wesley.	
Koudas, N. (2000, November). Space efficient bitmap indexing. In Proceedings of

the Conference on Information and Knowledge Management (CIKM),	McLean,	
Virginia	(pp.	194-201).	ACM	Press.

O’Neil,	P.	(1987,	September).	Model	204	architecture	and	performance.	Workshop
in High Performance Transaction Systems,	Asilomar,	California	(pp.	40-59).	
Springer-Verlag.

O’Neil,	P.	(1997).	Informix	indexing	support	for	data	warehouses.	Database Pro-
gramming and Design, 10(2),	38-43.

O’Neil,	P.,	&	Quass,	D.	(1997,	May).	Improved	query	performance	with	variant	
indexes.	In	Proceedings of the International Conference on Management of
Data (SIGMOD 1997),	Tucson,	Arizona	(pp.	38-49).	ACM	Press.

Rotem,	D.,	Stockinger,	K.,	&	Wu,	K.	(2005a,	September).	Optimizing	I/O	costs	of	
multidimensional	queries	using	bitmap	indices.	In	Proceedings of the Inter-
national Conference on Database and Expert Systems Applications (DEXA),	
Copenhagen,	Denmark	(pp.	220-229).	Springer	Verlag.

Rotem,	D.,	Stockinger,	K.,	&	Wu,	K.	(2005b,	November).	Optimizing	candidate	
check	costs	for	bitmap	indices.	In	Proceedings of the Conference on Informa-
tion and Knowledge Management (CIKM),	Bremen,	Germany	(pp.	648-655).	
ACM	Press.

Stockinger,	K.,	Shalf,	J.,	Bethel,	W.,	&	Wu,	K.	(2005,	June).	DEX:	Increasing	the	
capability of scientific data analysis pipelines by using efficient bitmap indices
to accelerate scientific visualization. In Proceedings of the International Con-
ference on Scientific and Statistical Database Management (SSDBM), Santa	
Barbara,	California	(pp.	35-44).	IEEE	Computer	Society	Press.

Stockinger,	K.,	Wu,	K.,	&	Shoshani,	A.	(2002).	Strategies	for	processing	ad	hoc	
queries	on	large	data	sets.	In	Proceedings of the International Workshop on
Data Warehousing and OLAP (DOLAP), McLean,	Virginia	(pp.	72-79).

Stockinger,	K.,	Wu,	K.,	&	Shoshani,	A.	(2004).	Evaluation	strategies	for	bitmap	
indices	with	binning.	In	Proceedings of the International Conference on Da-
tabase and Expert Systems Applications (DEXA),	Zaragoza,	Spain	(pp.	120-
129).	Springer-Verlag.

��8 Stockinger & Wu

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

TeraScaleCombustion.	(2005).	TeraScale High-fidelity simulation of turbulent com-
bustion with detailed chemistry.	Retrieved	May	31,	2006,	from	http://www.
scidac.psc.edu

Wong,	H.	K.	T.,	Liu,	H.	-F.,	Olken,	F.,	Rotem,	D.,	&	Wong,	L.	(1985,	August).	Bit	
transposed files. In Proceedings of the International Conference on Very Large
Databases (VLDB),	Stockholm,	Sweden	(pp.	448-457).	Morgan	Kaufmann.

Wu,	K.,	Otoo,	E.	J.,	&	Shoshani,	A.	(2002,	July).	Compressing	bitmap	indexes	for	
faster	search	operations.	In	Proceedings of the International Conference on
Scientific and Statistical Database Management (SSDBM),	Edinburgh,	Scot-
land	(pp.	99-108).	Computer	Society	Press.

Wu,	K.,	Otoo,	E.	J.,	&	Shoshani,	A.	(2004,	September).	On	the	performance	of	
bitmap	indices	for	high	cardinality	attributes.	In	Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB),	Toronto,	Canada	(pp.	
24-35).	Morgan	Kaufmann.

Wu,	K.,	Otoo,	E.,	&	Shoshani,	A.	 (2006).	An efficient compression scheme for
bitmap indices	(Tech.	Rep.	LBNL-49626).	ACM	Transactions	on	Database	
Systems	(TODS).

Wu,	M.-C.,	&	Buchmann,	A.	P.	(1998,	February).	Encoded	bitmap	indexing	for	data	
warehouses.	In	Proceedings of the International Conference on Data Engineer-
ing (ICDE),	Orlando,	Florida	(pp.	220-230).	IEEE	Computer	Society	Press.

Indexing in Data Warehouses ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Chapter.VIII

Indexing.in.
Data.Warehouses:

Bitmaps.and.Beyond
Karen C. Davis

University of Cincinnati, USA

Ashima Gupta
University of Cincinnati, USA

Abstract

Bitmap indexes (BIs) allow fast access to individual attribute values that are needed
to answer a query by storing a bit for each distinct value and tuple. A BI is defined
for a single attribute and the encodings are based solely on data values; the property
map (PMap) is a multidimensional indexing technique that precomputes attribute
expressions for each tuple and stores the results as bit strings. In order to deter-
mine whether the PMap is competitive with BIs, we conduct a performance study
of the PMap with the range encoded bit sliced index (REBSI) using cost models to
simulate storage and query processing costs for different kinds of query types. We
identify parameters that have significant effect on index performance and determine
situations in which either index is more suitable. These results could be useful for
improving the performance of an analytical decision making system.

�80 Davis & Gupta

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Introduction

A	data	warehouse	is	a	repository	of	information	collected	from	different	sources.	
Querying	of	data	warehouses	for	decision-making	in	areas	such	as	sales	and	mar-
keting	planning	is	referred	to	as	online	analytical	processing	(OLAP).	In	the	write-
once-read-many	environment	of	OLAP	applications,	multidimensional	data	analysis	
is	now	increasingly	used	for	decision	support	systems	(DSS).	Complex	DSS	queries	
are	often	submitted	interactively	and	reducing	their	response	time	is	a	critical	issue	
in	the	data	warehousing	environment	(Vanichayobon	&	Gruenwald,	1999;	Jurgens	
&	Lenz,	2001).	Bitmap	indexes	are	widely	used	for	indexing	warehouse	data.
A	bitmap	index	(BI)	allows	fast	access	to	tuples	based	on	values	of	attributes.		Bitmap	
indexes	consume	only	a	fraction	of	the	size	of	the	indexed	data	and	provide	dramatic	
performance	gains.	Boolean	operations	such	as	AND,	OR	and	NOT	are	extremely	
fast	for	bitmap	vectors,	also	called	bitmaps	or	bit-vectors	(O’Neil	&	Quass,	1997).	
Bitmaps	indicate	whether	an	attribute	in	a	tuple	is	equal	to,	greater	than	or	less	than	
(depending upon the type of BI) a specific value or not. The length of a bit-vector
is	equal	to	the	cardinality	of	the	indexed	table.	The	position	of	a	bit	in	a	bit-vector	
denotes	the	position	of	a	tuple	in	the	table.	For	example,	a	simple	bitmap	index	
(SBI)	on	an	attribute	status,	with	domain	{backorder,	shipped},	results	in	two	bitmap	
vectors,	say	Bb	and	Bs.	For	Bb,	the	bit	is	set	to	1	if	the	corresponding	tuple	has	the	
value	“backorder”	for	the	attribute	status,	otherwise	the	bit	is	set	to	0.	Similarly	for	
Bs,	the	bit	is	set	to	1	if	the	associated	tuple	has	the	value	“shipped”	for	the	attribute	
status,	otherwise	the	bit	is	set	to	0.	For	another	attribute,	say	product-category	having	
values from 1-5, there is a bitmap vector corresponding to each of the five values,
say	B1-B5.	Tuples	that	have	product-category	value	as	1	have	the	bit	corresponding	
to	bit-vector	B1	set;	the	rest	of	the	bits	for	that	tuple	are	0.	Table	1	shows	an	SBI	on	
status and product-category for 5 tuples with two bitmap vectors for status and five
for	product-category.	These	indexes	can	be	interpreted	as	follows:	tuple	number	2	

Table 1. Example of two simple bitmap indexes

														status																	product-category
Tuple	 Bs Bb B1 B2 B3 B4 B5

1	 1	 0	 0	 1	 0	 0	 0	
2	 1	 0	 0	 0	 0	 0	 1	
3	 1	 0	 0	 0	 0	 1	 0	
4	 0	 1	 1	 0	 0	 0	 0	
5	 1	 0	 0	 0	 1	 0	 0	

Indexing in Data Warehouses �8�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

corresponds	to	a	shipped	order	(Bs	is	set)	with	product-category	5	(B5	is	set).		To	
illustrate	query	processing	with	an	SBI,	consider	a	simple	SQL	query	that	retrieves	
all	tuples	corresponding	to	shipped	orders	for	product	category	5:

SELECT	*	FROM	Inventory	WHERE	status	=	“shipped”	AND	product-category	=	“5”

In	order	to	evaluate	this	query	using	the	example	SBIs,	a	query	optimizer	takes	the	
bitmaps	for	“status	=	shipped”	and	“product-category	=	5”	and	performs	a	logical	
AND	operation.	Tuple	2	in	Table	1	is	the	only	tuple	in	the	query	answer.
We	survey	bitmap	 indexing	 techniques	 in	 the	next	section.	 	Then	we	propose	a	
novel	multidimensional	indexing	technique	that	precomputes	attribute	expressions	
for	data	items	and	stores	the	results	as	bit	strings.		We	study	performance	issues	for	
this	technique	and	a	comparable	bitmap	index	and	recommend	scenarios	where	one	
may	be	preferable	to	the	other.		We	conclude	with	guidelines	for	improving	query	
processing	performance	for	complex	range	queries.

Background

Bitmap	indexes	are	designed	for	different	query	types	including	range,	aggregation	
and	join	queries.		Figure	1	shows	tree	diagrams	of	bitmap	indexes,	which	we	clas-
sify	into	three	categories	based	on	their	main	features.	Figure	1(a)	shows	bitmap	
indexing	methods	that	use	the	simple	bitmap	index	(SBI)	representation	described	
in	the	previous	section.	The	techniques	that	use	clustering	of	attribute	values	are	

Figure 1. Classification of bitmap indexing techniques

Range-based	BI	
(RBBI)	

Simple	BI	(SBI)	

Applications	

Dynamic	BI	
(DBI)	

Clustering	

Koudas	BI	
(KEBI)	

Bitmap	Join	Index	
(BJI)	

(a)	

Bit-Sliced	Index	(BSI)	
(Uniform	or	Non-Uniform	Base)	

Equality	Encoded	
(EEBSI)	

Range	Encoded	
(REBSI)	

(c)	

Encoded	BI	(EBI)	
Total-Order	Preserving	

Encoding	(TOPE)	
Range-based	

Encoding	(RE)	
(b)	

Hierarchy	Encoding	
(HE)	

Groupset	(GI)	

�82 Davis & Gupta

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

grouped	in	one	category.	The	other	category	consists	of	techniques	that	are	basi-
cally	applications	of	SBI.	Figure	1(b)	shows	encoded	bitmap	index	(EBI)	techniques	
that	use	binary	encoding	along	with	a	mapping	table	and	retrieval	functions.	Each	
attribute	is	encoded	in	such	a	way	that	the	number	of	bitmap	vectors	retrieved	to	
answer	a	query	is	reduced	compared	to	the	SBI.	Bit-sliced	index	techniques	are	
shown	in	Figure	1(c).	They	are	based	on	the	idea	of	attribute	value	decomposition,	
that	is,	decomposition	of	an	attribute	value	in	digits	according	to	some	base,	either	
uniform	or	non-uniform.	They	can	be	either	range	or	equality	encoded.	
BIs	comparable	to	the	novel	technique	introduced	in	the	third	section	are	discussed	
in	further	detail	below.		We	select	one	technique	for	comparison	in		the	fourth	section	
based	on	three	criteria:	suitability	for	processing	range	queries,	published	design	
algorithms	for	the	index,	and	research	results	indicating	that	the	technique	is	com-
petitive	with	other	known	techniques.		Note	that	bitmap	compression	techniques	
are	not	considered	here;	they	are	discussed	in	the	future	work	section.

Simple.Bitmap.Index

The	basic	idea	of	a	simple	bitmap	index	(also	called	Pure	BI)	(O’Neil	&	Quass,	
1997)	is	to	use	a	bit	(0	or	1)	to	indicate	whether	an	attribute	in	a	tuple	is	equal	to	
a specific value or not. The sparsity of the bit-vectors increases with increasing
cardinality	of	the	indexed	attribute	and	number	of	tuples	in	the	database,	resulting	
in	poor	space	utilization	and	high	processing	cost.	Hence,	as	the	cardinality	of	the	
indexed	attribute	and	the	database	size	increases,	both	time	and	space	complexity	
of	building	and	maintaining	an	SBI	rapidly	becomes	higher	 (Wu	&	Buchmann,	
1998).	Thus,	an	SBI	is	best	for	database	tables	with	a	small	number	of	records	and	
small	cardinality	attributes.	For	these	reasons,	SBIs	are	not	considered	in	our	per-
formance	comparison.

Applications.of.Bitmap.Indexes

We	describe	two	techniques,	dynamic	bitmap	indexes	and	bitmap	join	indexes,	that	
are	referred	to	as	bitmap	indexes	in	the	literature	but	are	really	applications	of	BIs.	
They	can	use	the	SBI	or	any	other	kind	of	BI	that	we	present	in	this	chapter;	we	
discuss	them	here	for	the	sake	of	completeness.
The	dynamic	bitmap	index	(DBI)	(Sarawagi,	1997)	is	a	temporary	structure	that	is	
built	from	a	permanent	index	as	needed	by	a	query	optimizer	to	include	or	eliminate	
records	for	selection.	 It	 is	constructed	dynamically	from	a	vertically	partitioned	
table	in	which	each	column	stores	a	compressed	representation	of	the	values	in	the	

Indexing in Data Warehouses �8�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

corresponding	attribute	column.	For	example,	if	there	are	n	different	values	of	an	
attribute,	they	are	mapped	to	continuous	integers	and	each	value	is	represented	by	
logn	bits,	which	represents	its	integer	map.	When	a	predicate	requires	a	subset	of	
values	in	that	column,	the	required	values	are	converted	to	their	integer	maps	and	
represented	in	an	in-memory	array	or	hash	table.	The	column	partition	is	scanned	
and	for	each	value,	the	in-memory	array	is	probed.	Depending	on	whether	a	match	
is	found	or	not,	a	1	or	a	0	is	stored	at	the	corresponding	row	position	of	a	bitmap.	
This	process	is	repeated	for	predicates	on	other	columns.	At	the	end	of	scanning	all	
queried	columns,	individual	bitmaps	are	obtained,	which	can	be	ANDed	or	ORed	
resulting	in	a	bitmap	with	1	at	row	positions	that	satisfy	all	predicates.	Tuples	cor-
responding	to	these	row	positions	can	be	retrieved.	
A	bitmap	join	index	(BJI)	(Vanichayobon	&	Gruenwald,	1999)	is	built	by	creating	
a	bitmap	index	on	a	table	T	based	on	a	single	column	A	of	table	S,	where	A	is	a	
join	attribute;	hence,	the	actual	join	need	not	be	performed.		It	is	usually	used	with	
low	cardinality	data.

Koudas’ Encoded Bitmap Index

Koudas	(2000)	proposes	a	technique	to	index	large	cardinality	attributes	using	less	
storage	space	compared	to	SBIs,	taking	into	account	both	the	query	and	data	dis-
tribution	of	the	attribute	instances.	We	call	this	technique	Koudas’	encoded	bitmap	
index	(KEBI).	The	idea	is	to	encode	sequences	of	attribute	values	together	in	the	
bitmap	index,	as	opposed	to	creating	one	bitmap	per	attribute	value.	The	information	
returned	from	the	bitmap	may	be	a	superset	of	a	query	answer.		Table	2	shows	an	
example	of	this	approach.	The	attribute	WorkYears has five distinct values. If they
are encoded separately as in an SBI, it results in five bitmaps. By encoding more
than	one	value	in	a	bitmap,	the	number	of	vectors	is	reduced	to	two.	Attribute	val-
ues	{1,	2}	and	{3,	4,	5}	are	jointly	encoded.	A	query	referencing	attribute	value	2	
retrieves	tuples	having	the	attribute	value	1	along	with	the	ones	having	the	value	2.		
Therefore,	it	is	vital	to	minimize	the	number	of	false	hits	that	each	bitmap	returns,	
since these tuples have to be retrieved and filtered out in a post-processing phase.
The	essential	idea	is	the	same	as	the	SBI	in	that	a	bit	(1	or	0)	is	used	to	indicate	

Table 2. Koudas’ encoded bitmap index

A {1,2}

{3,4,5}

2	 0	 1	
4	 0	 1	
1	 1	 0	
5	 0	 1	
3	 1	 0	

�84 Davis & Gupta

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

whether an attribute in a tuple is equal to a specific value (here, a set of values) or
not.	The	choice	of	attribute	values	to	jointly	encode	depends	on	the	frequency	of	
access	of	each	attribute	value	as	well	as	the	frequency	of	occurrence	of	the	value	in	
the	attribute	instances.	The	mutually	exclusive	range	of	consecutive	attribute	values	
encoded	together	in	the	same	bitmap	is	called	the	range	of	that	bitmap.
The	author	compares	KEBI	with	a	strategy	in	which	the	attribute	values	are	divided	
into	approximately	equal	length	ranges.	The	number	of	false	hits	is	large	for	KEBI	
under	uniform	data	distribution,	but	reduces	sharply	as	the	skew	in	data	distribution	
increases.	As	compared	to	the	SBI,	KEBI	saves	index	storage	space,	reducing	the	
number of index pages retrieved, although filtering excess tuples requires additional
processing	time	and	could	increase	the	number	of	data	pages	retrieved.	We	do	not	
consider	KEBI	for	comparison	here	as	it	has	only	been	studied	for	equality	or	point	
queries	and	DSS	queries	typically	include	complex	range	queries.

Range-Based.Bitmap.Indexing

SBIs can cause significant storage overhead if the attributes to be indexed have
high	cardinality.	This	is	the	motivation	for	range-based	bitmap	indexing	(RBBI)	
(Wu	&	Yu,	1998).	In	RBBI,	the	attribute	values	are	partitioned	into	a	small	number	
of	ranges	and	a	bitmap	vector	is	constructed	to	represent	each	range	and	not	each	
distinct	value.	A	bit	(1	or	0)	is	used	to	indicate	whether	an	attribute	in	a	tuple	is	
within a specific range or not.
Unless	the	distribution	of	the	attribute	values	is	known,	ranges	can	be	unevenly	
populated	 resulting	 in	highly	unbalanced	query	 access	 times.	RBBI	utilizes	 the	
distribution	of	attribute	values	in	the	data	to	construct	a	range-based	bitmap	index	
for	high	cardinality	attributes	with	skew.	It	uses	a	dynamic	bucket	expansion	and	
contraction approach in which data are first scanned into the buffer to construct the

Table 3. Range-based bitmap indexing

Bucket	
Number

Ranges	
on	Age

Number	of	
Persons Tuple	 [1,	16) [16,	28) [28,	40) [40,	60) [60,	65)

	1 [1,	16) 21 1 1 0 0 0 0

2 [16,	28) 22 2 0 0 0 1 0

3 [28,	40) 21 3 0 0 1 0 0

4 [40,	60) 22 4 0 1 0 0 0

5 [60,	65) 23 5 0 0 0 0 1

(a)	Population	of	Each	Bucket			 	 (b)	Bitmap	Representation	of	Example	Tuples

Indexing in Data Warehouses �8�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

bucket	ranges	by	counting	the	data	points	falling	into	each	bucket.	If	the	bucket	
grows	beyond	a	threshold,	it	is	expanded	into	smaller-range	buckets.	Adjacent	buckets	
are then combined into the final required number of buckets that are approximately
balanced.	The	bitmap	vectors	are	built	with	another	scan	of	the	data.
Table 3(a) shows five nearly-equally populated bucket ranges on the attribute Age,
constructed by the RBBI technique. The range-based bitmap index for the first 5
tuples	of	a	database	with	109	tuples	is	shown	in	Table	3(b).	Note	that	the	records	
are	nearly	evenly	distributed	in	the	5	buckets.
The	ranges	are	continuous-valued	intervals	and	mutually	exclusive.	Thus,	RBBI	can	
effectively	answer	range	and	point	queries,	though	it	results	in	retrieval	of	excess	
tuples	since	all	the	tuples	within	the	queried	range	are	retrieved	and	the	excess	has	
to be filtered out. While RBBI is designed for range queries, it is not chosen for the
performance	study	discussed	in	this	chapter;	we	choose	a	BSI	technique	because	its	
developers	give	compelling	results	regarding	its	competitive	performance.

Encoded.Bitmap.Index

The	encoded	bitmap	index	(EBI)	(Wu	&	Buchmann,	1998)	has	been	proposed	to	
index large cardinality domains since they are not efficiently indexed by SBI. The
basic	idea	is	to	encode	each	value	of	the	attribute	domain	as	a	binary	number,	rather	
than	have	a	bit-vector	for	each	value	as	in	an	SBI.	Each	distinct	value	of	an	attribute	
is	encoded	using	a	number	of	bits,	each	of	which	is	stored	in	a	bitmap	vector.	For	
example,	if	attribute	A	has	12,000	different	values,	then	an	SBI	has	12,000	bitmap	
vectors.	Encoded	bitmap	indexing	uses	only	log2	12000,	i.e.,	14	bitmap	vectors	
and	a	mapping	table.	A	lookup	table	stores	the	mapping	between	A	and	its	encoded	
representation.	Cases	for	NULL	values	or	non-existing	tuples	are	encoded	together	
with	other	domain	values	so	separate	existence	vectors	are	not	required,	as	in	the	
case	of	SBIs.	An	EBI	on	a	column	A	of	table	T	consists	of	a	set	of	bitmap	vectors,	

Table 4. Encoded bitmap indexing

A B2 B1 B0 NULL 000 fa 	B2’B1B0’

b 0 1 1 NotExist 001 fb B2’B1B0

a 0 1 0 a 010 fc 	B2B1’B0’

d 1 0 1 b 011 fd B2B1’B0

c 1 0 0 c 100

NULL 0 0 0 d 101

(a)	Bitmap	vector									 						(b)	Mapping	table	for	A								 									(c)	Retrieval	functions

�86 Davis & Gupta

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

a	one-to-one	mapping	and	a	set	of	retrieval	Boolean	functions.	Table	4	shows	an	
EBI	for	an	attribute	A	with	domain	{a,	b,	c,	d}.	NULL	and	non-existing	values	are	
encoded	with	the	domain,	so	that	the	total	number	of	domain	values	is	6	(NotExist,	
NULL,	a,	b,	c,	and	d.)	The	number	of	bit-vectors	required	is	log2	6	=	3.
To retrieve data, a Boolean function is defined for each value. If a value v with a
domain	of	size	k	is	encoded	as	b1b0	(bi		{0,	1},	i	=	0	to	log2	k -1),	then	the	retrieval	
function for v is defined as x1x0,	where	xi	=	Bi	if	bi	=1,	otherwise	xi	is	equal	to	the	
negation	of	Bi,	i.e.,	xi	=	Bi’.		The	number	of	bitmap	vectors	accessed	is	minimized	
as a result of a well-defined encoding.
Compared	to	SBI,	the	EBI	improves	space	utilization	and	solves	sparsity	problems.	
It performs efficiently with wide-range queries. In an environment where selection
patterns can be pre-defined, the main idea of EBI is to establish a well-defined en-
coding so that time efficiency can be improved without sacrificing space efficiency.
Encoding	schemes	are	crucial	since	Boolean	operations	can	be	performed	on	the	
retrieval	functions	before	retrieving	the	data,	reducing	the	total	number	of	opera-
tions performed and bitmap vectors accessed. Defining a good encoding scheme is
a difficult and open problem. In addition, EBI performance degrades for equality
queries	since	all	the	bitmap	vectors	have	to	be	searched.	Due	to	these	drawbacks,	we	
do not consider EBI for further comparison here. Variations of the EBI for specific
scenarios are given by Wu and Buchmann (1998) and listed in our classification in
Figure	1	under	EBI	techniques.

Bit-Sliced.Index

A	bit-sliced	index	(BSI)	(O’Neil	&	Quass,	1997;	Chan	&	Ioannidis,	1998)	is	a	set	
of	bitwise	projections	of	an	attribute.	BSIs	are	total-order	preserving,	hence	they	
are suitable for representing numeric (fixed-point) or ordinal types of attributes,
and	are	especially	good	for	wide-range	searches.	The	design	space	of	a	BSI	is	de-
fined by two factors, attribute value decomposition and encoding scheme (Chan &
Ioannidis,	1998).
The first factor, attribute	 value	 decomposition	 (AVD), defines the arithmetic to
represent	the	values	of	an	attribute.	It	is	the	decomposition	of	an	attribute’s	values	
in	digits	according	to	a	chosen	base.	For	example,	124	can	be	decomposed	into	
<1, 2, 4> according to base <10, 10, 10>. The second factor that defines a BSI is
the	encoding	scheme.	Consider	the	ith	component	of	an	index	with	a	base	value	bi.	
There	are	two	schemes	to	directly	encode	the	corresponding	values	vi	(0	<=	vi	<=	
bi	–1)	in	bits,	equality	encoding	and	range	encoding.	In	equality	encoding,	the	bit	
in a component is set if equality condition is satisfied and there are bi	bits,	one	for	
each	possible	value.	The	representation	of	value	vi	has	all	bits	set	to	0,	except	for	

Indexing in Data Warehouses �8�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

the	bit	corresponding	to	vi,	which	is	set	to	1.	Thus,	an	equality	encoded	bit-sliced	
index	(EEBSI)	component	with	base	bi	consists	of	bi	bitmaps.	
In	range-encoding,	there	are	bi	bits	(one	for	each	possible	value)	set	so	as	to	satisfy	
an	inequality	condition	between	the	value	represented	by	them	and	the	decomposed	
attribute	value	of	the	corresponding	record	for	that	component.	The	representation	
of	value	vi	has	the	vi	rightmost	(or	leftmost)	bits	set	to	0	and	the	remaining	bits	
(starting	from	the	one	corresponding	to	vi,	and	to	the	left	(or	right))	are	set	to	1.	In	
the	example	shown	in	Table	5,	the	bitmaps	are	less	than	or	equal	to	encoded.	For	
the	attribute	value	124,	1	is	represented	by	component	3,	2	by	component	2	and	4	
by	component	1.	The	representation	of	1	has	one	rightmost	bit	set	to	0	and	the	rest	
set	to	1,	the	representation	of	2	has	two	rightmost	bits	set	to	0	and	the	rest	set	to	1,	
and	so	on.	Intuitively,	each	bitmap	Bivi	has	1	in	all	the	records	whose	ith	component	
value	is	less	than	or	equal	to	vi.	Since	the	bitmap	Bibi–1	has	all	bits	set	to	1,	it	does	
not	need	 to	be	 stored,	 so	 a	 range-encoded	bit-sliced	 index	 (REBSI)	 component	
consists	of	(bi	–1)	bitmaps.	For	the	decimal	base	all	digits	are	less	than	or	equal	to	
9,	thus	bit	9	of	all	components	is	set	and	can	be	ignored,	as	shown	in	Table	5.
Non-binary, uniform base BSIs are often less efficient in both space and time than
non-uniform	base	BSIs	with	the	same	number	of	components	(Chan	&	Ioannidis,	
1998).	For	BSIs	with	a	uniform	base,	as	the	magnitude	of	the	base	increases,	the	
index	requires	more	space	but	performs	better.	The	effort	of	performing	range	re-
trieval	can	be	reduced	if	a	larger	number	of	bitmaps	are	stored,	for	example,	base	
10	instead	of	base	2.	
We	consider	 range-encoded	non-uniform	base	bit-sliced	 index	 (REBSI)	 for	 our	
performance comparison, as it is one of the most efficient indexes to answer range
as well as equality queries and has clearly defined design algorithms (Chan & Ioan-
nidis,	1998).	Its	performance	has	been	compared	with	that	of	tree-based	indexes	and	
is	shown	to	be	better	suited	for	a	data	warehousing	environment	(Jurgens	&	Lenz,	
2001). It is more efficient than the equality-encoded BSI in the case of range as well
as	equality	queries	(Chan	&	Ioannidis,	1998).	Since	range	selections	are	a	common	
class	of	queries	in	OLAP,	we	choose	this	technique	for	our	performance	study.	

Table 5. A range-encoded decimal (base-10) bit-sliced index

A B� B� B� B� B0 B� B� B� B� B� B0 B� … B� B� B� B� B� B0

124 1 1 … 1 1 0 1 1 … 1 1 0 0 1 … 1 1 0 0 0 0

…

Component	3 Component	2 Component	1

�88 Davis & Gupta

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Beyond.Bitmaps:.The.Property.Map

There	are	two	characteristics	of	bitmap	indexes	that	we	modify	in	order	to	consider	
a	new	kind	of	bitmap.		One	is	that	bitmap	indexes	generally	create	encodings	based	
on	values	only;	we	propose	encodings	based	on	values	and	driven	by	application	
knowledge,	e.g.,	queries.		In	this	respect,	our	technique	is	similar	to	EBI	(Wu	&	Bu-
chmann,	1998),	however,	how	to	design	the	encoding	of	an	EBI	is	an	open	question.	
The	second	is	that	bitmap	indexes	are	generally	single	attribute-only;	we	propose	a	
solution	that	supports	multi-attribute	queries	directly.		RBBI	(Wu	&	Yu,	1998)	has	
a	similar	notion	of	range-encoding,	but	our	technique	supports	additional	encoding	
schemes.	The	novel	technique	introduced	here	is	called	a	Property	Map.		The	basic	
concept is defined and illustrated below and then its performance is compared to
the	REBSI	technique	in	the	following	section.
A	property	map	(PMap) defines properties on each attribute depending on knowl-
edge	of	the	application,	such	as	a	known	set	of	queries.	The	value	of	each	property	
is	computed	as	a	bit	string	for	each	data	instance,	and	these	are	concatenated	to	
form	a	pstring.		To	illustrate	a	PMap,	consider	an	example	relation	Inventory	with	
attributes	quantity,	status,	and	product-category	with	a	PMap	having	the	following	
properties:

•	 Property.1:..Range	on	quantity;	contains	range	intervals	on	the	quantity	at-
tribute	from	20-29,	30-39,	40-49,	and	49-59.	Each	interval	is	represented	by	a	
bit	string.	For	example,	the	interval	20-29	is	represented	by	00,	30-39	by	01,	
40-49	by	10,	and	50-59	by	11.	Thus,	Property	1	requires	2	bits.

•	 Property.2:		Enumerated	on	product-category;	has	the	enumerated	values	of	
the	product-category	attribute	(1,	2,	3,	4	and	5).	A	bit	string	represents	each	
value.	Therefore,	1	is	represented	000,	2	by	001,	3	by	010,	4	by	011,	and	5	by	
100.	Therefore,	this	property	requires	3	bits.

•	 Property.3:.	Boolean	on	status	=	“shipped,”	property	value	is	true	(or	1)	when	
a	record’s	attribute	status	is	“shipped”	and	false	(or	0)	otherwise.	This	property	
requires	1	bit.

The	pstrings	for	this	example	are	6	bits	long;	two	bits	for	Property	1,	three	bits	for	
Property	2,	and	one	bit	for	Property	3.	Table	6	shows	5	records	of	an	Inventory	table	
with	the	corresponding	values	for	each	property	and	the	resulting	pstring.		The	proper-
ties	are	constructed	based	on	some	knowledge	about	the	application	(e.g.,	frequently	
executed	queries),	and	can	be	used	to	answer	multi-attribute	queries	directly.
The	example	PMap	given	here	is	handcrafted	in	order	to	illustrate	terminology	and	
concepts. In practice, designing an efficient PMap is not a trivial task. We have

Indexing in Data Warehouses �8�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

proposed	algorithms	that	rely	on	heuristics	to	reduce	the	design	space	and	create	
efficient PMaps and are currently implementing them in an automated design tool
(Darira	et	al.,	2006).	One	example	of	a	design	heuristic	is	how	we	determine	the	
details	of	range	properties.	We	group	all	of	the	predicates	over	a	single	attribute	in	
a	frequent	query	set	together	and	create	range	intervals	based	on	numeric	constants	
that	appear	in	inequality	comparisons.	We	create	Boolean	properties	on	equality	
predicates	and	for	attribute	expressions	that	do	not	evaluate	to	numeric	values.	Enu-
merated	properties	are	created	for	attributes	where	the	number	of	bits	to	represent	
ranges	over	the	attribute	exceeds	log2	of	the	number	of	values	in	the	domain	(since	
this	is	the	size	of	an	enumerated	property	pstring.)	Combinations	of	properties	and	
their	ordering	are	evaluated	based	on	reducing	the	number	of	excess	tuples	that	
would	be	retrieved	when	evaluating	the	query	set.
In	order	to	illustrate	how	PMaps	are	used	for	query	evaluation,	consider	the	query	
used	earlier:

SELECT	*	FROM	Inventory	WHERE	status	=	“shipped”	AND	product-category	=	“5”

The	query	processor	determines	the	pmask,	which	is	obtained	by	setting	the	bits	
corresponding	to	the	properties	covering	the	query	predicates	to	1	(status	and	prod-
uct-category)	and	setting	all	other	bits	to	0	(quantity),	yielding	the	pmask	001111	
in this case. The pfilter is obtained by setting all bits corresponding to properties
covering	the	query	predicate	to	the	desired	value,	and	setting	all	other	bits	to	0.	
The pfilter here is 001001, since the queried product-category value is equal to 5
(property	value	100)	and	status	value	is	equal	to	“shipped”	(property	value	1.)	The	
tuples for which the filter formula “pstring AND pmask = pfilter” is TRUE are in
the result set. For tuple 2 in Table 6, the filter formula evaluates to TRUE since the
pstring (001001) ANDed with 001111 (pmask) is equal to 001001 (pfilter). Since
no other tuple in this example satisfies the filter formula, only tuple 2 is in the result
set.		To	answer	a	range	query	such	as	“product-category	>	5,”	the	equals	sign	in	the	
filter formula is changed to greater than.

Tuple.ID (qty,.prod-cat,.status) Property.1 Property.2 Property.3 pstring

1 (49,	2,	s) 01 001 1 010011

2 (24,	5,	s) 00 100 1 001001	

3 (52,	4,	s) 11 011 1 110111

4 	(37,	1,	b) 01 000 0 010000

5 (28,	3,	s) 00 010 1 000101

Table 6. Example of property strings (pstrings)

��0 Davis & Gupta

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Detailed definitions, algorithms, and cost models for storage and query process-
ing	are	introduced	for	PMaps	(Gupta	et	al.,	2002)	and	REBSI	(Chan	&	Ioannidis,	
1998;	Jurgens	&	Lenz,	2001).		The	next	section	discusses	simulations	to	compare	
performance	and	their	results.		Observations	and	analysis	of	the	performance	re-
sults	follow.

Performance.Study

In	this	section,	the	methodology	for	conducting	simulations	and	performing	analy-
sis	is	described,	followed	by	a	discussion	of	some	representative	results.		General	
observations	over	all	of	the	simulation	results	are	offered	in	conclusion.

Methodology

The	simulation	methodology	includes	a	synthetic	query	benchmark	that	forms	the	
basis	of	our	investigation	along	with	parameters	that	are	varied	to	study	the	impact	
of	different	database	environments.		The	analysis	is	based	on	observations	of	index	
page	retrievals	and	relative	performance	for	each	set	of	queries	derived	from	the	
benchmark.		Components	of	the	methodology	are	described	in	the	three	sections	
below.

1.		 Queries:.The	set	query	benchmark	(Gray,	1993)	is	designed	to	measure	the	
performance	of	systems	that	strategically	analyze	data	repositories	in	commer-
cial	enterprises.	Computer	resource	usage	by	such	queries	can	be	extremely	
high,	and	hence	we	use	this	benchmark	to	compare	the	performance	of	PMap	
indexing	and	REBSI.	The	set	query	benchmark	has	the	following	key	char-
acteristics.
• The queries for the benchmark are specified in SQL, and the data used is

representative	of	real	applications.	
•	 These	queries	are	chosen	to	span	the	tasks	performed	by	different	strategic	

data	applications	(e.g.,	document	search,	direct	marketing,	and	decision	
support).

• The benchmark specifies measurements for a wide range of selectivity
values	within	each	query	type.

	 The	database	has	a	single	table	called	BENCH	that	contains	1	million	rows	of	
200	bytes	each	(224	with	overhead).	Besides	using	the	given	size	to	measure	
performance	for	large	databases,	we	also	use	a	size	of	50,000	rows	to	mea-

Indexing in Data Warehouses ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

sure	the	performance	for	a	smaller	database	size.	Each	of	the	13	attributes	has	
integer	values	ranging	from	1	to	its	cardinality,	which	is	represented	in	the	
attribute	name.	Thus	K2	has	2	values:	1	and	2,	K4	has	4	values:	1,	2,	3	and	4,	
K100k	has	100,000	values:	1,	2,	…,	100,000.	One	indexed	attribute,	KSEQ,	is	
a	clustered	primary	key,	with	values:	1,	2,	…,	1,000,000.	The	remaining	twelve	
attributes	are	unordered	and	out	of	these,	we	do	not	consider	K40,	K250k	and	
K500k	in	our	selected	queries	to	limit	the	number	of	queries.	The	attributes	
included for each query set are sufficient to provide a variety of cardinality
and	selectivity	values	for	that	set,	limiting	the	number	of	experiments	at	the	
same	time.	In	our	simulations,	we	assume	uniform	data	distribution	and	this	
is	consistent	with	 the	BENCH	table.	We	identify	a	subset	of	 the	set	query	
benchmark	that	consists	of	document	search	and	direct	marketing	queries.	We	
omit	the	management	reporting	queries	as	we	do	not	take	into	consideration	
aggregation	and	join	queries	in	our	study.	The	performance	study	here	focuses	
on	selection	costs	and	we	simulate	the	selection	conditions	(SQL	WHERE	
clause)	in	each	chosen	query.	

	 The	total	number	of	queries	that	we	consider	is	43,	and	from	these	we	create	
subsets	based	on	different	criteria,	such	as	cardinality	of	attributes	and	query	
selectivities.	The	six	query	sets	are	based	on	queries	embodying	high	cardinal-
ity	attributes,	very	high	cardinality	attributes,	 low	cardinality	attributes,	 low	
selectivity,	high	selectivity,	and	mixed	queries.	For	each	of	these	query	sets,	we	
vary input parameters to study their impact, while we fix other factors to limit
the	number	of	simulations.		The	values	of	parameters	are	given	in	Table	7.

 Apart from data and system specific parameters, we define a parameter called
scaling	factor	(sf),	to	facilitate	the	comparison	between	PMap	and	REBSI.	We	
consider	REBSIs	that	are	time-optimal	under	a	given	space	constraint	(Chan	
&	Ioannidis,	1998).	REBSIs	occupy	a	large	amount	of	disk	space	because	a	
separate	REBSI	has	to	be	created	for	each	attribute	to	be	indexed,	so	more	
space	is	allotted	to	it	than	space	occupied	by	the	corresponding	PMap.	The	
space	constraint	for	REBSI	is	equal	to	the	space	occupied	by	the	correspond-
ing	PMap	multiplied	by	a	scaling	factor.	For	example,	a	scaling	factor	of	2	
means	that	the	bitmap	index	occupies	twice	the	space	used	by	the	PMap.	The	
minimum	scaling	factor	is	the	smallest	value	for	which	a	REBSI	correspond-
ing	to	the	PMap	can	be	constructed.	We	vary	scaling	factors	to	compare	PMap	
performance	with	faster	REBSIs;	greater	storage	allocation	reduces	the	number	
of	bitmaps	that	need	to	be	scanned	to	answer	a	query.	Apart	from	the	minimum	
scaling	factor	(sf_min)	needed	to	create	a	REBSI,	we	consider	one	or	two	other	
suitable	sf	values	to	create	REBSI	with	increased	space	consumption	but	faster	
performance.		In	other	words,	to	create	a	REBSI	with	the	same	attributes	as	
the	PMap	requires	four	times	the	space	(sf	=	4)	of	the	PMap.		Since	that	is	the	
baseline	performance	for	REBSI,	we	also	create	a	REBSI	that	is	10	times	the	

��2 Davis & Gupta

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

size of our PMap to investigate how the PMap competes with a more efficient
REBSI.		

2.		 Measuring.PMap.performance:.The	pstrings	of	a	PMap	are	stored	in	a	B+	
tree for efficient searching. A query with multiple predicates can be rewritten
in	disjunctive	normal	form	and	processed	as	separate	queries	whose	results	are	
OR’d	together	to	obtain	the	query	answer	(we	call	this	strategy	A)	or	processed	
as a single query (strategy B). In either case, multiple pfilters are generated;
we call the one with the lowest value pfilter low (pfilterl)	and	the	one	with	the	
highest value pfilter high (pfilterh). Only the pstrings with values between pfilterl	
and pfilterh	need	to	be	searched	in	the	B+	tree.		For	our	performance	study,	the	
more efficient strategy is chosen in each individual case. A minimum number
of	record	pointers	to	answer	a	query	is	computed	based	on	the	utilization	of	
a	pstring;	for	example,	a	range	property	may	only	utilize	20	different	values	
even	though	32	have	to	be	allocated	to	store	it	(5	bits).		A	maximum	number	
of	record	pointers	is	computed	based	on	the	number	of	leaf	level	blocks	that	
appear between the lower and upper pfilters. The minimum represents best
case	performance	and	the	maximum	is	worst	case	performance.		Since	the	real	
performance	lies	in	between,	we	also	compute	an	average	of	the	two.

3.		 Simulation. framework:	Our	 experiments	 study	 the	 impact	 of	 parameters	
such	as	block	size,	database	size,	scaling	factor,	query	selectivity,	and	attribute	
cardinality	that	affect	index	performance.	For	each	of	the	query	sets,	we	create	
PMaps	and	REBSIs	and	measure	their	performance	in	terms	of	the	number	

Table 7. Parameter values

Data
Specific

VAR DESCRIPTION TYPE VALUES

d dimensionality	
of	index integer Number	of	unique	attributes	

referenced	in	the	query	set

t number	of	tuples integer 50,000	and	1,000,000

c attribute	cardinality integer n,	where	Kn	is	the	attribute

SREC size	of	a	data	record bytes 224

System
Specific

SB block	size bytes 2048,	4096	and	8192

ws word	size bits 16	and	32

User
Defined sf scaling	factor integer

minimum	sf	(sf_min)	depending	
upon	the	corresponding	PMap,	
up	to	10

Indexing in Data Warehouses ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

of	index	pages	retrieved.	A	PMap	is	created	using	heuristic	design	algorithms	
(Darira	et	al.,	2006).	As	a	result	of	 the	design	heuristics,	PMap	ranges	are	
designed	to	exactly	cover	 the	query	predicates	and	hence	no	excess	 tuples	
are	retrieved.	We	calculate	the	PMap	storage	requirements	and	index	pages	
retrieved	for	each	of	the	queries,	for	this	query	set.	In	other	words,	for	each	
of	the	two	pstring	sizes	(ws)	for	a	query	set,	we	vary	the	number	of	tuples	(t)	
and	block	size	(Sb)	and	calculate	the	space	occupied	by	the	corresponding	
PMap	and	the	minimum	and	maximum	number	of	index	pages	retrieved	to	
answer	the	queries	in	this	set.	For	each	database	size	and	block	size	combi-
nation corresponding to a PMap, we find 3 different REBSIs by varying the
scaling factor and using algorithms FindSmallestN and RefineIndex (Chan &
Ioannidis,	1998).	In	the	REBSI	for	a	query	set,	a	separate	REBSI	is	created	for	
every	attribute	that	is	present	in	the	query	set	to	be	able	to	answer	each	query	
completely.	Then	we	determine	the	index	pages	retrieved	using	each	of	these	
bitmaps	for	the	particular	query	set	using	the	Time	formula	(Chan	&	Ioannidis,	
1998).	Thus,	the	inputs	to	the	REBSI	storage	and	performance	measurement	
simulator	are	tuple	size,	block	size	and	the	scaling	factor	with	respect	to	the	cor-
responding	PMap.	The	results	of	these	experiments	for	the	PMap	and	REBSI	
techniques	with	one	query	set	(very	high	cardinality	attributes)	are	presented	
and	analyzed	here	to	illustrate	the	methodology	and	develop	intuition	for	the	
general	observations	we	offer.		Cost	models	and	results	for	different	query	sets	
are	detailed	elsewhere	(Gupta	et	al.,	2002).

Very High Cardinality Attribute Query Set

The	very	high	cardinality	attribute	query	set	(VHCAQS)	consists	of	high	cardinality	
attribute	queries	(Gupta	et	al.,	2002)	along	with	the	queries	containing	the	attribute	
KSEQ,	in	which	case	we	substitute	only	the	high	cardinality	attributes	for	KN		so	
that	these	queries	contain	only	high	cardinality	attributes.	Even	though	the	HCAQS	
is	a	subset	of	VHCAQS,	a	different	PMap	is	obtained	here	as	the	additional	attri-
bute	KSEQ	is	included.	The	number	of	bits	allotted	to	each	property	in	the	pstring	
is	different	from	the	PMap	generated	for	the	HCAQS,	as	is	the	space	consumption.	
Table	8	shows	the	12	queries	in	VHCAQS.

Property.Map

The PMap for this set of queries constitutes five properties on the five attributes
accessed	in	the	queries.	In	this	example,	the	dimensionality	of	the	PMap	index	is	5	
and pstring size is 11. For each query, the pmask, pfilterl, and pfilterh	are	shown	in	
Table	9.	The	properties	in	the	VHCAQS	PMap	are	as	follows:

��4 Davis & Gupta

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

•	 Property.1:	Range	property	on	K100k	utilizing	2	bits:	[0,	2),	[2,	3),	[3,	4)	and	
[4,	100000],

•	 Property.2:.Range	property	on	K10k	utilizing	2	bits:	[0,	2),	[2,	3),	[3,	4)	and	
[4,	10000],

•	 Property.3:.Range	property	on	K1k	utilizing	2	bits:	[0,	2),	[2,	3),	[3,	4)	and	
[4,	1000],

•	 Property 4:	Boolean	property	on	“K2	=	2”	utilizing	1	bit,	and
•	 Property.5:.Range	property	on	KSEQ	utilizing	4	bits:	[0,	2),	[2,	3),	[3,	4),	[4,	

400000),	[400000,	410001),	[410001,	420000),	[420000,	430001),	[430001,	
440000),	[440000,	450001),	[450001,	460000),	[460000,	470001),	[470001,	
480000),	[480000,	490001),	[490001,	500001)	and	[500001,	1000001).

ID Query

HC1 K1k	=	2

HC2 K10k	=	2

HC3 K100k	=	2

HC7 KSEQ	=	2

HC4 K2	=	2	AND	K1k	=	3

HC5 K2	=	2	AND	K10k	=	3

HC6 K2	=	2	AND	K100k	=	3

HC8 K2	=	2	AND	KSEQ	=	3

HC9 KSEQ	>=	400000	AND	KSEQ	<=	500000	AND	K10k	=	3

HC10 KSEQ	>=	400000	AND	KSEQ	<=	500000	AND	K100k	=	3

HC11

KSEQ	>=	400000	AND	KSEQ	<=	410000	OR
KSEQ	>=	420000	AND	KSEQ	<=	430000	OR
KSEQ	>=	440000	AND	KSEQ	<=	450000	OR
KSEQ	>=	460000	AND	KSEQ	<=	470000	OR
KSEQ	>=	480000	AND	KSEQ	<=	500000	AND	K10k	=	3

HC12

KSEQ	>=	400000	AND	KSEQ	<=	410000	OR
KSEQ	>=	420000	AND	KSEQ	<=	430000	OR
KSEQ	>=	440000	AND	KSEQ	<=	450000	OR
KSEQ	>=	460000	AND	KSEQ	<=	470000	OR
KSEQ	>=	480000	AND	KSEQ	<=	500000	AND	K100k	=	3

Table 8. Very high cardinality attribute query set

Indexing in Data Warehouses ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Range-Encoded.Bit-Sliced.Index

A	separate	REBSI	is	created	for	each	attribute	referenced	in	the	query	set,	i.e.,	for	
K2,	K1k,	K10k,	K100k	and	KSEQ;	the	dimensionality	of	the	bit-sliced	index	is	5.	In	
order	to	create	a	REBSI	with	the	same	attributes	as	the	PMap,	four	times	the	space	
is	required	(min_sf	=	4).		Table	10	shows	the	average	number	of	bitmap	scans	for	
each	attribute	for	both	database	sizes,	with	the	min_sf	and	8K	blocksize.	The	size	
of	each	bitmap	in	blocks	(z)	is	also	given	for	both	cases.

Observations

Figure	2	shows	a	performance	comparison	graph	for	the	two	techniques	and	the	
VHCAQS	for	the	database	size	of	1,000,000	tuples	and	8K	blocksize.		The	x-axis	
shows	the	queries	and	the	y-axis	shows	the	index	pages	retrieved	for	each	query.	
The	queries	are	ordered	in	decreasing	order	of	the	difference	between	the	average	
number	of	 index	pages	 retrieved	by	 the	PMap	(PAvg)	and	 the	number	of	pages	
retrieved	by	the	REBSI	with	the	smallest	scaling	factor	(min_sf),	i.e.,	occupying	
the minimal required space. To simplify the figure, performance results for HC11
and	HC12	are	not	shown.		In	both	cases,	the	number	of	index	blocks	exceeds	3,000	
for	the	smaller	REBSI	(sf	=	4)	and	1,000	for	the	larger	REBSI	(sf	=	10);	the	PMap	
average	number	of	blocks	is	36	and	113,	respectively.

Table 9a. pmasks for queries in the VHCAQS

ID K100k K10k K1k K2 KSEQ

HC1 0 0 0 0 1 1 0 0 0 0 0

HC2 0 0 1 1 0 0 0 0 0 0 0

HC3 1 1 0 0 0 0 0 0 0 0 0

HC7 0 0 0 0 0 0 0 1 1 1 1

HC4 0 0 0 0 1 1 1 0 0 0 0

HC5 0 0 1 1 0 0 1 0 0 0 0

HC6 1 1 0 0 0 0 1 0 0 0 0

HC8 0 0 0 0 0 0 1 1 1 1 1

HC9 0 0 1 1 0 0 0 0 0 0 0

HC10 1 1 0 0 0 0 0 1 1 1 1

HC11 0 0 1 1 0 0 0 1 1 1 1

HC12 1 1 0 0 0 0 0 1 1 1 1

��6 Davis & Gupta

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

We offer three specific observations pertaining to the VHCAQS:

1.		 Relative.performance.per.query:	The	performance	of	PMap	and	REBSI	in	
the	case	of	K1k	queries	(HC2	and	HC5)	is	similar	for	both	database	sizes.	
Queries	with	higher	cardinality	attributes	(KSEQ,	K100k)	have	better	average	
PMap	performance	in	all	cases	for	the	VHCAQS.	In	the	case	of	database	size	
of	1,000,000	tuples	with	a	blocksize	of	8K	(Figure	2),	the	least	space	that	the	
REBSI	requires	to	be	able	to	create	bitmaps	for	all	the	attributes	is	4	times	
the	space	required	by	the	PMap	(min_sf	=	4).	For	 the	min_sf,	 the	average	

Table 9b. pfilters for queries in the VHCAQS

ID K100k K10k K1k K2 KSEQ K100k K10k K1k K2 KSEQ

HC1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1

HC2 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

HC3 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

HC7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1

HC4 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1

HC5 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1

HC6 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1

HC8 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0

HC9 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 0 1

HC10 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1

HC11 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 0 1

HC12 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1

Table 10. Number of bitmap scans for attributes in VHCAQS

Attribute 	1,000,000	tuples
(min_sf=4,	z=16)

50,000	tuples
(min_sf=5,	z=1)

K2 1 1

K1k 9 8

K10k 12 11

K100k 15 14

KSEQ 18 17

Indexing in Data Warehouses ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

PMap	performance	is	better	than	REBSI	for	most	of	the	queries	in	this	set,	
and	comparable	for	the	remaining	two.	For	the	REBSI	occupying	10	times	the	
space	of	the	PMap,	the	average	performance	of	the	PMap	is	better	in	eight	of	
the	queries,	comparable	in	two	(HC5	and	HC2)	and	worse	in	the	case	of	two	
queries,	HC4	and	HC1.	The	minimum	number	of	pages	(PMin)	retrieved	by	

Figure 2. PMap and REBSI performance comparison: VHCAQS

1,
00

0,
00

0
tu

pl
es

; 8
K

 b
lo

ck
si

ze

0

�0
0

20
0

�0
0

40
0

�0
0

60
0

�0
0

80
0

�0
0

HC�0

HC�

HC�

HC�

HC�

HC�

HC�

HC�

HC�

HC�

Q
ue

rie
s

Index Blocks

B
I s

f 4
B

I s
f �

0
P

A
vg

��8 Davis & Gupta

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

the	PMap	(not	shown	here)	is	less	than	the	number	of	pages	retrieved	by	any	
of	the	REBSIs.

2.		 Impact.of.cardinality:.For	the	queries	with	attribute	KSEQ	and	K100k,	the	
PMap	performance	is	better	for	both	database	sizes	and	all	scaling	factors.	
Queries	with	K1k	(HC1	and	HC4)	show	similar	performance	for	both	database	
sizes.	As	the	attribute	cardinality	decreases,	REBSI	performance	improves.	
For	the	PMap,	performance	for	similar	queries	varies	according	to	the	posi-
tion	of	attribute	properties	in	the	pstring	rather	than	attribute	cardinalities,	as	
in	the	case	of	HCAQS	(Gupta	et	al.,	2002).	Though	KSEQ	has	cardinality	10	
times	that	of	K100k,	the	savings	in	the	case	of	queries	accessing	K100k	(HC3	
and	HC6)	compared	to	similar	queries	accessing	KSEQ	(HC7	and	HC8)	are	
greater.	This	is	because	of	the	relative	positions	of	the	properties	covering	these	
attributes in the pstring. The difference between pfilterh and pfilterl	is	the	main	
contributing	factor	to	the	cost	of	index	page	retrieval	in	the	worst	case,	i.e.,	
PMax. The relative position of properties in the pstring has significant impact
on	performance	of	a	PMap.	

3.		 Multi-attribute queries:	For	each	high	cardinality	attribute	KN,	the	PMap	
retrieves	fewer	than	or	the	same	number	of	pages	for	queries	of	the	form	K2	
AND	KN	as	the	ones	with	only	KN.	Multiple	conditions	increase	the	number	
of bits that are set in the pfilterl, which reduces the difference between pfil-
terh and pfilterl,	resulting	in	fewer	pages	retrieved.	For	the	REBSIs,	a	higher	
number	of	attributes	results	in	more	pages	retrieved	as	the	number	of	scans	
increases.	Thus,	PMaps	perform	better	than	REBSI	for	multi-attribute	queries	
for	the	VHCAQS.

Analysis

In	general,	we	conclude	the	following	based	on	our	simulations	and	analysis	over	
all	6	query	sets.

1.	 The	storage	cost	of	REBSI	is	higher	than	that	of	PMap	because	separate	REB-
SIs	have	to	be	created	for	each	of	the	attributes	accessed	in	the	frequently	used	
queries.	Due	to	the	trade-off	between	space	and	time,	the	scaling	factor	(sf)	
has	a	predictable	impact	on	the	performance	of	a	REBSI.	REBSI	performance	
increases	proportionally	to	increased	space	allocation.

2. The position of a property covering a predicate in the pstring significantly
affects	the	number	of	pages	retrieved	for	a	query	accessing	that	predicate.	
The closer the property to the beginning of the pstring, the higher the pfilterl	
value,	which	reduces	the	PMax	value,	i.e.,	the	number	of	pages	retrieved	

Indexing in Data Warehouses ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

by	the	PMap	in	the	worst	case.	This	is	illustrated	in	all	query	set	observa-
tions.	

3. PMap performance is not significantly affected by attribute cardinality or query
selectivity.

4.	 REBSI	 retrieval	cost	 increases	as	 the	number	of	attributes	accessed	 in	 the	
query	increases,	even	for	a	very	small	cardinality	attribute	like	K2.	On	the	
other	hand,	PMap	retrieval	cost	remains	the	same	or	decreases	with	multi-at-
tribute	queries,	as	the	additional	attributes	limit	the	pstring	search	by	changing	
pfilterl and pfilterh	values.

5.	 As	the	database	size	decreases,	REBSI	performance	becomes	better	and	the	
relative	savings	of	the	PMap	are	reduced.	This	is	intuitive	since	the	number	
of	tuples	directly	impacts	bit-vector	length	and	the	number	of	blocks	to	read	
one bitmap decreases significantly. Savings for PMaps over REBSI are higher
for	the	larger	database	sizes	and	high	cardinality	attributes,	essentially	since	
the	REBSI	performance	deteriorates	in	these	cases.		

6.	 We	identify	two	strategies	to	evaluate	a	disjunctive	query,	i.e.,	a	query	with	
one	or	more	OR	operators.	Strategy	A	splits	a	high	level	query	into	two	or	
more	separate	queries	by	rewriting	it	in	disjunctive	normal	form	and	process-
ing	each	disjunct	as	a	separate	query,	taking	the	union	of	the	result	set	as	the	
final answer. These disjuncts are processed individually and the results for both
constitute	the	answer	to	the	query.	Strategy	B	processes	a	high	level	query	as	
a single query using multiple pfilters, without separating the disjuncts. We ex-
periment	with	both	strategies	for	all	the	query	sets	having	disjunctive	queries	
(VHCAQS,	LCAQS,	HSQS	and	MQS)	and	choose	the	best	strategy	in	each	
case	in	our	performance	studies.	Strategy	A	performs	better	in	general,	except	
for	the	queries	HC11	and	HC12	in	the	VHCAQS.	These	queries	have	multiple	
conditions	on	the	attribute	KSEQ	and	Strategy	B	performs	much	better	for	
them.		

Conclusion

In	this	section	we	present	techniques	and	enhancements	that	emerge	from	analyz-
ing	query	processing	performance	of	PMaps.	Further	 study	of	 these	 techniques	
could	result	in	improved	PMaps	and	guidelines	for	using	different	PMap	creation	
techniques	 and	query	processing	 strategies	 in	different	 scenarios.	 	Based	on	all	
observations	and	analyses,	we	give	 the	following	general	guidelines	for	 the	use	
of	PMaps	and	applications	where	they	may	be	useful	and	provide	extra	savings	in	
query	processing.

200 Davis & Gupta

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

•	 From	our	analysis,	we	learn	that	PMap	performance	is	not	affected	by	attri-
bute cardinality; however the property position in the pstring is a significant
factor.	 Since	 performance	 for	 most	 other	 indexing	 techniques	 deteriorates	
for high cardinality attributes, we can achieve significant savings for these
by	creating	PMaps	on	high	and	very	high	cardinality	attributes.	The	property	
ordering	should	be	in	decreasing	order	of	savings	desired	for	the	attributes.	
Thus,	the	attributes	for	which	we	desire	maximum	savings	have	properties	at	
the	beginning	of	the	pstring.	

• PMaps are beneficial when there is limited space for index creation, as they
occupy	much	less	space	compared	to	bitmaps	indexing	the	same	set	of	attri-
butes.

•	 PMaps	perform	well	for	multi-attribute	queries,	even	better	than	single	attri-
bute	queries,	unlike	REBSIs	and	many	other	known	techniques.	Hence,	it	is	
useful	to	create	PMaps	for	frequently	used	multi-attribute	queries.

•	 PMap	savings	increase	in	the	case	of	large	databases.	Therefore,	PMaps	could	
be created for very large databases where SBIs are inefficient. PMap savings
also	increase	for	larger	block	sizes	when	the	database	size	is	large.	

•	 PMaps	perform	very	well	in	the	case	of	inequality	queries	or	high	selectivity	
queries. This result could be used to create PMaps for specific applications.

Extensions	to	the	research	reported	here	are	summarized	as	follows:

•	 Currently,	 PMaps	 are	 not	 designed	 to	 represent	 aggregation	 and	 grouping	
queries.	Grouping	attributes	are	usually	low	cardinality	attributes,	and	can	be	
covered	by	enumerated	properties	in	a	PMap.	After	processing	the	WHERE	
clause,	the	pstrings	of	the	tuples	in	the	intermediate	result	need	to	be	scanned	
for	the	ones	satisfying	the	grouping	property.	Future	research	could	extend	
the	PMap	to	solve	aggregation	and	grouping	queries.	

•	 Index	maintenance,	including	deletions	and	updates,	is	an	area	for	future	in-
vestigation.	

• A solution to the problem of finding a well-defined encoding discussed by
Wu and Buchmann (1998) can be used to make PMaps more efficient. Bit
string	representations	of	properties	and	their	ordering	can	be	decided	using	
a well-defined encoding so that fewer pstrings have to be searched. Vertical
partitioning	of	pstrings	may	be	another	way	to	improve	PMap	performance.

•	 Although	useful	for	our	study	of	the	impact	of	parameters	on	performance,	the	
database	sizes	used	here	are	small	compared	to	real	data	warehouse	applica-
tions.		Further	investigation	into	the	scalability	of	PMaps	is	a	topic	for	future	
study.

Indexing in Data Warehouses 20�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

• Techniques for compressing bitmap indexes (Wu et al., 2006) increase effi-
ciency	of	in-memory	logical	operations.		The	impact	of	these	techniques	on	
query	processing	with	PMaps	is	an	open	question.

References

Chan,	C.	Y.,	&	Ioannidis,	Y.	(1998).	Bitmap	index	design	and	evaluation.		Proceedings
of the ACM SIGMOD International Conference, Seattle,	WA	(pp.	355-366).	

Darira,	R.,	Davis,	K.	C.,	&	Grommon-Litton,	J.	(2006).	Heuristic	design	of	prop-
erty	maps.	Proceedings of the 9th ACM Workshop on Data Warehousing and
On-Line Analytical Processing, McLean,	VA.

Gray,	J.	(1993).	The benchmark handbook for database and transaction processing
systems. Morgan	Kaufmann	Publishers.

Gupta,	A.,	Davis,	K.	C.,	&	Grommon-Litton,	J.	(2002).	A	performance	comparison	
of	property	map	and	bitmap	indexing.	Proceedings of the Fifth ACM Work-
shop on Data Warehousing and On-Line Analytical Processing, McLean,	VA	
(pp.	65-71).

Jurgens,	M.,	&	Lenz,	H.	J.	(2001).	Tree	based	indexes	vs.	bitmap	indexes:	A	per-
formance	study.	International Journal of Cooperative Information Systems.
10(3),	355-376.

Koudas, N. (2000). Space efficient bitmap indexing. Proceedings of the 9th Inter-
national Conference on Information and Knowledge Management, McLean,	
Virginia	(pp.	194-201).

O’Neil,	P.,	&	Quass,	D.	(1997).	Improved	query	performance	with	variant	indexes.	
Proceedings of the ACM SIGMOD Conference, Tucson,	AZ	(pp.	38-49).

Sarawagi,	S.	(1997).	Indexing	OLAP	Data.	Data Engineering Bulletin, 20(1),	36-
43.

Vanichayobon,	 S.,	 &	 Gruenwald,	 L.	 (1999).	 Indexing techniques for data
warehouses’queries.	The	University	of	Oklahoma,	School	of	Computer	Sci-
ence,	Technical	Report.

Wu, K., Otoo, E., & Shoshani, A. (2005). An efficient compression scheme for bit-
map	indices.	ACM Transactions on Database Systems, 31(1),	1-38.	

Wu,	K.	L.,	&	Yu,	P.	S.	(1998).	Range-based	bitmap	indexing	for	high	cardinality	
attributes	with	skew.	Proceedings of the 22nd International Computer Software
and Application Conference, Vienna,	Austria (pp.	61-67.

202 Davis & Gupta

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Wu,	M.	C.,	&	Buchmann,	A.	(1998).	Encoded	bitmap	indexing	for	data	warehouses.	
Proceedings of the 14th International Conference on Data Engineering, Or-
lando,	FL	(pp.	220-230).

Efficient and Robust Node-Partitioned Data Warehouses 20�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Chapter.IX

Efficient and Robust
Node-Partitioned
Data.Warehouses

Pedro Furtado
Universidade de Coimbra, Portugal

Abstract

Running large data warehouses (DWs) efficiently over low cost platforms places
special requirements on the design of system architecture. The idea is to have the
DW on a set of low-cost nodes in a nondedicated local area network (LAN). Nodes
can run any relational database engine, and the system relies on a partitioning
strategy and query processing middle layer. These characteristics are in contrast
with typical parallel database systems, which rely on fast dedicated interconnects
and hardware, as well as a specialized parallel query optimizer for a specific data-
base engine. This chapter describes the architecture of the node-partitioned data
warehouse (NPDW), designed to run on the low cost environment, focusing on the
design for partitioning, efficient parallel join and query transformations. Given
the low reliability of the target environment, we also show how replicas are incor-
porated in the design of a robust NPDW strategy with availability guarantees and
how the replicas are used for always-on, always efficient behavior in the presence
of periodic load and maintenance tasks.

204 Furtado

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Introduction

Data	warehouses	(DWs)	are	specialized	databases	storing	historical	data	pertaining	
to	an	organization.	The	objective	is	to	allow	business	analysis	on	varied	perspec-
tives.	They	have	been	applied	in	many	contexts,	for	instance,	insurance	companies	
keeping	track	of	individual	events	on	insurance	policies,	telecom	companies	with	
terabytes	of	data	tracking	individual	phone	calls	or	individual	machine	events	in	
production	factories,	generating	gigabytes	of	detailed	data	per	day.	The	degree	of	
detail	over	which	the	data	is	stored	in	the	data	warehouse	can	vary,	but	from	the	
examples	given,	it	is	easy	to	see	that	data	warehouses	can	become	extremely	large.	
As	such,	multiple	performance	optimization	strategies	can	be	sought	after,	ranging	
from	specialized	indexing,	materialized	views	for	faster	computation	over	predicted	
query	patterns,	to	parallel	architectures	and	parallel	processing.	Parallel	database	
systems	are	implemented	on	one	of	the	alternative	parallel	architectures:	shared-
memory,	shared-disk,	shared	nothing,	hierarchical,	or	NUMA	(Valduriez	&	Ozsu,	
1999),	which	have	implications	on	parallel	query	processing	algorithms,	data	par-
titioning,	and	placement.	In	practice,	parallel	environments	involve	several	extra	
overheads	related	to	data	and	control	exchanges	between	processing	units	and	also	
concerning	storage,	so	that	all	components	of	the	system	need	to	be	designed	to	
avoid bottlenecks that would compromise the whole processing efficiency. Some
parts of the system have to account for the aggregate flow into/from all units. For
instance,	in	shared-disk	systems	the	storage	devices	and	interconnections	should	be	
sufficiently fast to handle the aggregate of all accesses without becoming a signifi-
cant bottleneck. To handle these requirements, a significant initial and continuous
investment	is	necessary	in	specialized,	fast,	and	fully-dedicated	hardware.	An	at-
tractive	alternative	is	to	use	a	number	of	low-cost	computer	nodes	in	a	shared-noth-
ing	environment,	possibly	in	a	nondedicated	local	network.	The	only	requirement	
is	that	each	node	has	some	database	engine	and	connectivity,	while	a	middle	layer	
provides	parallel	processing.	This	system	must	take	into	consideration	partitioning	
and	processing,	as	the	computer	nodes	and	interconnects	are	not	specially	designed	
to	that	end.	The	node-partitioned	data	warehouse	(NPDW)	is	a	generic	architecture	
for	partitioning	and	processing	over	the	data	warehouse	in	such	an	environment.	
The	objective	of	this	chapter	is	to	discuss	and	analyze	partitioning,	processing,	and	
availability	issues	in	the	design	of	the	NPDW.	

Background

Typical	data	warehouse	schemas	have	some	distinctive	properties:	they	are	mostly	
read-only,	with	periodic	 loads.	This	 characteristic	minimizes	 consistency	 issues	

Efficient and Robust Node-Partitioned Data Warehouses 20�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

which	are	a	major	concern	regarding	the	parallelization	of	transactional	schemas	
and	workloads;	data	warehouse	schemas	usually	have	multidimensional	charac-
teristics	(Kimball,	Reeves,	Ross,	&	Thornthwaite,	1998),	with	 large	central	 fact	
relations	containing	several	measurements	(e.g.,	 the	amount	of	sales)	and	a	size	
of	up	to	hundreds	or	 thousands	of	gigabytes,	and	dimensions	(e.g.,	shop,	client,	
product,	supplier).	Each	measurement	is	recorded	for	each	individual	combination	
of	dimension	values	(e.g.,	sales	of	a	product	from	a	supplier,	in	one	shop	and	for	
an individual client). While there are specific analysis-oriented data marts stored
and	analyzed	using	some	nonrelational	multidimensional	engine	(Kimball,	Reeves,	
Ross,	&	Thornthwaite,	1998),	our	focus	is	on	the	large	central	repository	warehouses	
stored	in	a	relational	engine;	warehouses	are	used	for	online	analytical	processing	
(OLAP),	including	reporting	and	ad-hoc	analysis	patterns.	OLAP	involves	com-
plex	query	patterns,	with	joins	involving	multiple	relations	and	aggregations.	These	
query patterns can pose difficulties to the performance of shared-nothing partitioned
environments,	especially	when	nodes	need	to	exchange	massive	quantities	of	data.	
While	very	small	dimensions	can	be	replicated	into	every	node	and	kept	in	memory	
to	speed	up	joins	involving	them,	much	more	severe	performance	problems	appear	
when	many	large	relations	need	to	be	joined	and	processed	to	produce	an	answer.	
We	use	the	schema	and	query	set	of	the	decision	support	performance	benchmark	
TPC-H	(TPC)	as	an	example	of	such	a	complex	schema	and	query	workload	and	
also	as	our	experimental	testbed.	Performance	and	availability	are	relevant	issues	
in data warehouses in general and pose specific challenges in the NPDW context
(standard	computer	nodes	and	nonspecialized	interconnects).	
Some	research	in	recent	years	has	focused	on	ad-hoc	star	join	processing	in	data	
warehouses.	Specialized	structures	such	as	materialized	views	(Rousopoulos,	1998)	
and	specialized	indexes	(Chan	&	Ioannidis,	1998;	O’Neil	&	Graefe,	1995)	have	
been	proposed	to	improve	response	time.	Although	materialized	views	are	useful	in	
a	context	in	which	queries	are	known	in	advance,	this	is	not	the	case	when	ad-hoc	
queries	are	posed.	Parallel	approaches	are	therefore	important	as	they	can	be	used	
alone or in conjunction with specialized structures to provide efficient processing
for	any	query	pattern	at	any	time.	In	the	past,	there	has	also	been	a	lot	of	work	on	
implementing	database	 systems	over	 conventional	 shared-nothing	 architectures,	
as	reviewed	in	DeWitt	and	Gray	(1992).	A	shared-nothing	architecture	consists	of	
a	set	of	 independent	computer	nodes	 that	are	connected	 through	some	network.	
Each	node	has	its	own	storage	devices	and	there	is	no	expensive	local	area	storage	
network	with	shared	storage	devices.	Additionally,	the	NPDW	does	not	assume	any	
specialized	fast	interconnects	between	nodes,	as	it	should	work	over	a	nondedicated	
local	area	network.	In	this	context,	performance	is	very	dependent	on	strategies	to	
partition	data	 into	nodes’	storage	devices	and	processing	 into	nodes’	processing	
units,	respectively.	It	is	also	very	dependent	on	achieving	a	balance	between	data	
exchange	requirements	and	autonomous	processing	among	nodes.	The	lack	of	fast	
specialized	hardware	and	interconnects	in	the	target	environment	means	that	there	

206 Furtado

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

would	be	too	large	a	penalty	if	relations	were	not	carefully	placed	among	nodes	to	
explore	parallelism	power	and	reduce	bottlenecks.	This	is	the	reason	why	one	of	
the	major	concerns	is	to	decide	how	to	partition	or	cluster	relations	into	nodes	both	
on	initial	placement	and	subsequent	reorganizations.	

Partitioning,.Parallel.Join,.and.Cost.Models

Several strategies have been proposed for efficient distributed placement and query
processing.	The	semi-join	operator	(Bernstein	&	Chiu,	1981)	applies	selection	and	
projection	operations	before	sending	data	through	the	network.	Other	proposed	strat-
egies for efficient distributed query processing include placement dependency (Liu,
Chen,	&	Krueger,	1996),	which	uses	dependency	relationships	between	relations	
to	co-locate	fragments	for	faster	processing.	This	and	other	alternative	strategies	
are	compared	experimentally	in	Liu	and	Yu	(1993).	The	most	promising	solutions	
to	extra	join	overheads	that	characterize	many	successful	parallel	and	distributed	
database	systems	in	shared-nothing	environments	involve	hash-partitioning	large	
relations	into	nodes	in	order	to	minimize	data	exchange	requirements	(DeWitt	&	
Gerber,	1985;	Kitsuregawa,	Tanaka,	&	Motooka,	1983).	Parallel	hash-join	algo-
rithms,	also	reviewed	in	Yu	and	Meng	(1998),	consider	partitioning	and	allocating	
intervening	relation	fragments	into	processors	or	computer	nodes	for	fast	join	pro-
cessing.	These	strategies	typically	allocate	a	hash	range	to	each	processor,	which	
builds	a	hash	table	and	hashes	relation	fragments	accordingly.	In	a	shared-nothing	
environment,	it	often	becomes	necessary	to	exchange	data	between	nodes	in	order	
to	send	tuples	into	the	node	that	has	been	allocated	the	corresponding	hash-value	
range	for	the	join	attribute.	This	process	is	called	partitioning,	if	the	relation	is	not	
partitioned	yet,	or	repartitioning,	if	the	relation	is	already	partitioned	but	must	be	
reorganized.	Both	operations	can	be	costly	because	they	may	require	heavy	data	
exchange	over	the	network	connecting	the	nodes.	In	this	work	we	will	refer	to	par-
titioning	(and	placement)	not	as	the	operation	of	partitioning	while	processing	a	
join	but	rather	as	an	initial	placement	and	sporadic	reorganization	task	that	decides	
which	relations	are	to	be	divided	or	replicated	into	nodes	and	which	partitioning	
attributes are to be used. Williams and Zhou (1998) review five major data place-
ment strategies (size-based, access frequency-based, and network traffic based) and
conclude	experimentally	that	the	way	data	is	placed	in	a	shared-nothing	environment	
can	have	considerable	effect	on	performance.	Hua	and	Lee	(1990)	use	variable	par-
titioning	(size	and	access	frequency-based)	and	conclude	that	partitioning	increases	
throughput	for	short	transactions	but	complex	transactions	involving	several	large	
joins	result	in	reduced	throughput	with	increased	partitioning.	
Some	of	the	most	promising	partitioning	and	placement	approaches	focus	on	query	
workload-based	partitioning	choice	(Rao,	Zhang,	&	Megiddo,	2002;	Zilio,	Jhingram,	
&	Padmanabhan,	1994).	These	strategies	use	the	query	workload	to	determine	the	

Efficient and Robust Node-Partitioned Data Warehouses 20�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

most	appropriate	partitioning	attributes,	which	should	be	related	to	typical	query	
access	patterns.	But	while	they	are	targeted	at	generic	parallel	databases	and	may	
require tight integration with a specific cost predictor and optimizer (Rao et al., 2002),
we	discuss	generic	data	partitioning	that	is	independent	of	the	underlying	database	
server	and	targeted	at	node	partitioned	data	warehouses	(Furtado,	2004a,	b,	c).	Con-
sider	the	query	Q	=	{	R1.A2,	R2.A4	|	R1.A1=R2.A1 Λ R2.A1=R3.A1 Λ R3.A2=R4.A2 Λ
R3.A3=R5.A3},	where	Ri	are	relations	and	Ai	are	attributes.	The	join	graph	of	Figure	
1a	is	a	graph	where	vertices	correspond	to	attributes	R.A	participating	in	equi-joins	
and	the	edges	depict	the	set	of	equi-joins	between	those	attributes.	A	component	is	
a	set	of	interconnected	vertices	and	its	edges.	The	join	graph	of	the	query	workload	
(JGQW)	shown	in	Figure	1b	adds	every	join	pattern	occurring	in	the	workload—the	
set	of	historical	or	expected	queries—with	a	weight	on	each	edge	representing	the	
frequency	of	occurrence	of	the	corresponding	join	on	the	query	workload	(either	a	
percentage	or	number	of	occurrences)	(Furtado,	2004a).			 	 	
Nodes	of	a	component	of	a	join	graph	form	a	set	of	relations	that	can	be	joined	
without	requiring	repartitioning	and	redistribution.	The	focus	of	the	workload-based	
algorithms	in	Furtado	(2004a,	2004b,	2004c)	is	to	partition	the	whole	relations	in	
the	join	graph	in	a	way	that	results	in	reduced	repartitioning	cost	and	redistribution	
requirements.	Given	this	JGQW	graph,	a	simple	partitioning	algorithm	can	assign	
partitioning attributes starting by the most frequent join (R3.A2, R2.A2 in the fig-

Figure 1. Join and query graphs for the example: (a) join graph and (b) join graph
for query workload (JGQW)

R1.A1	 R2.A1	 R3.A1	

R3.A2	

R5.A3	R3.A3	

R4.A2	

c1	

c2	

c3	

	
R1.A1	 R2.A1	 R3.A1	

R3.A2	

R5.A3	R3.A3	

R4.A2	

6		

8	
3	

R2.A2	 R3.A2	

10	

(a)

(b)

208 Furtado

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

ure),	to	reduce	the	amount	of	repartitioning.	More	complex	algorithms	may	search	
in	the	space	of	possible	alternative	execution	plans,	evaluating	a	cost	for	each	pos-
sible	plan	(Kossman	&	Stocker,	2000).	
In	a	data	warehouse,	there	are	an	additional	set	of	patterns	that	are	important	to	
guide	the	partitioning	algorithm.	Data	warehouses	have	facts	and	dimensions,	facts	
reference	dimensions,	and	queries	almost	always	join	dimensions	by	their	primary	
key.	As	a	result,	the	algorithm	we	proposed	in	Furtado	(2004c)	partitions	dimensions	
by	primary	keys	(except	small	ones,	which	are	replicated)	and	applies	workload-
based	partitioning	to	facts.
Several	works	refer	to	the	cost	of	processing	queries	over	a	distributed	database	
or	query	optimization	(query	plan	selection)	in	such	context	(Kossman	&	Stocker,	
2000;	Sasha,	Wang,	&	Tsong-Li,	1991;	Steinbrunn,	Moerkotte,	&	Kemper,	1997;	
Yu,	Guh,	Brill,	&	Chen,	1989).		
Yu	et	al.	(1989)	consider	partitioning,	local	processing,	and	data	communication	
costs	in	their	cost	model,	to	determine	which	relations	should	be	partitioned	and	
replicated,	considering	that	no	relation	is	prepartitioned.	Algorithms	and	optimiza-
tions	for	parallel	processing	of	multiway	joins	over	hash-partitioned	relations	are	
considered	by	Sasha	et	al.	(1991).	The	authors	also	introduce	a	cost	model	and	propose	
algorithms to determine the most efficient join order for multiway joins over fully
partitioned	relations	in	a	shared-nothing	cluster.	Some	works	(Kossman	&	Stocker,	
2000;	Steinbrunn	et	al.,	1997)	consider	heuristic	search	for	the	best	overall	execution	
plan,	considering	that	the	search	for	the	optimal	plan	is	an	NP-hard	problem.	

Low.Bandwidth.and.Early.Selection.

Another factor that affects the efficiency of partitioning schemes is the “available
bandwidth.”	Given	that	the	network	interconnecting	the	computer	nodes	may	be	
slow,	nondedicated,	or	the	system	may	be	running	several	queries	simultaneously,	
it	is	important	to	take	into	account	the	possibility	of	low	available	bandwidth.	This	
is	a	motivation	for	also	considering	partitioning	schemes	that	favor	replication	such	
as	strategies	based	on	the	partition	and	replicate	strategy	(PRS)	of	Yu	et	al.	(1989),	
which	partitions	a	single	relation	and	replicates	all	others	to	process	joins	without	
repartitioning	requirements.
Another	relevant	approach	to	reduce	both	 the	amount	of	repartitioning	and	also	
of	local	processing	at	each	node	is	to	apply	early-selection	strategies.	These	apply	
selection	conditions	as	early	as	possible	to	datasets	so	that	much	less	tuples	need	
to	be	processed	and	exchanged.	A	bitmap	index	(Chan	&	Ioannidis,	1998)	contains	
one	bitmap	per	possible	value	of	a	given	attribute	(or	a	coded	bitmap	with	b	bits	
for	2b	possible	values);	the	bitmap	consists	of	one	bit	(or	code)	per	row	to	indicate	
whether	or	not	that	row	matches	the	respective	attribute	value.	Chan	and	Ioannidis	

Efficient and Robust Node-Partitioned Data Warehouses 20�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

(1998)	describe	and	analyze	the	use	of	bitmap	indexes.	When	accessing	a	relation	
to	answer	a	query,	bitmaps	are	 read	and	bitwise-operated	 (e.g.,	 logical	AND	of	
bitmaps)	to	determine	which	relation	tuples	qualify	for	the	query	before	even	read-
ing	the	relation	itself.	All	processing	and	data	exchanging	is	then	applied	to	this	
reduced	subset	of	tuples.	
Bitmap join indexes (O’Neil & Graefe, 1995) are very efficient materialized struc-
tures	 for	 avoiding	costly	 joins.	When	bitmap	 join	 indexes	are	applied	 to	a	data	
warehouse	schema,	each	bitmap	indicates	which	fact	rows	correspond	to	each	at-
tribute	value	of	a	dimension	table,	representing	the	precomputed	result	of	a	join	
between	the	fact	and	a	dimension	table.	Consider	the	simple	example	of	a	“Sales”	
fact,	a	“Product”	dimension,	and	a	“Brand”	attribute	within	“Product.”	A	bitmap	
for	Brand	“X”	associates	a	bit	with	each	row	of	the	Sales	fact	with	a	“1”	bit	if	that	
row	is	a	sale	of	Brand	“X”	and	a	“0”	bit	otherwise.	A	query	for	sales	of	brand	“X”	
may	scan	the	bitmap	and	then	read	only	rows	of	Sales	corresponding	to	that	Brand.	
More	importantly,	it	also	avoids	the	need	to	join	Sales	with	Product	and	therefore	
the	need	 to	 repartition	Part	 if	 it	 is	partitioned	and	not	co-located	with	Sales.	 In	
summary,	the	use	of	early-selection	and	in	particular	bitmap	join	indexes	reduces	
the amount of data that must be exchanged very significantly, as long as there are
selective	conditions	on	the	query	patterns.	
Next	we	review	replication	for	availability	issues,	as	it	is	also	a	major	concern	in	
the	low-reliability	environment	of	the	NPDW.							

Replication for Availability

A	discussion	of	availability	for	node-partitioned	data	warehouses	brings	up	several	
issues	like	network	failures,	data	loading	failures,	or	availability	monitoring.	Each	
of these issues requires specific solutions. For instance, network failures can be ac-
commodated	using	backup	connections.	We	concentrate	on	handling	the	possible	
unavailability of computing nodes, guaranteeing efficient availability, and promot-
ing	manageability.	The	objective	is	that	the	system	be	always-on	and	always	ef-
ficient even when nodes are unavailable or entire parts of it are taken off-line for
maintenance	and	management	functions,	such	as	loading	with	new	data	or	other	
DBA functionality. Efficient node availability can be achieved via the use of rep-
licas.	A	replica	is	a	“standby”	copy	of	some	data	that	can	be	activated	at	any	mo-
ment	in	case	of	unavailability	or	failure	of	the	node	holding	the	“original,”	so	that	
processing	resumes	as	usual.	If	processing	with	unavailable	nodes	is	implemented	
efficiently, unavailability becomes less onerous to the whole system and it becomes
feasible	to	have	nodes	unavailable	or	to	stop	a	set	of	nodes	for	data	loading,	main-
tenance,	upgrading,	or	other	management	activities	without	any	major	repercus-
sions	to	processing.	Replica	placement	has	been	studied	in	different	contexts,	from	
RAID	disks	(Patterson,	Gibson,	&	Katz,	1998)	to	the	context	of	generic	parallel	

2�0 Furtado

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

and	distributed	databases.	Replication	strategies	for	shared-nothing	systems	range	
from	mirrored	disk	drives	(Tandem,	1987)	to	chained	declustering	(Hsiao	&	De-
Witt,	1990a,	b,	1991)	or	interleaved	declustering	(Teradata,	1985).	Copeland	and	
Keller	(1989)	compare	some	of	these	high-availability	media	recovery	techniques.	
There	are	also	recent	works	on	replication	(Coloun,	Pacitti,	&	Valduriez,	2004;	Lin,	
Kemme,	&	Jimenez-Peris,	2005;	Pacitti,	Özsu,	&	Coulon,	2003),	but	the	emphasis	
is	on	transaction-related	consistency	issues.	In	general,	most	works	focus	generic	
replication	strategies	for	availability	considering	nonpartitioned	relations	and	OLTP	
workloads, while in this chapter we briefly discuss and evaluate replication on the
specific node-partitioned data warehouse context. An extended discussion on the
subject	is	available	in	Furtado	(2005c).	

Partitioning.and.Processing..............
over the NPDW

In	a	partitioning	scheme,	each	relation	can	either	be	partitioned	(divided	into	parti-
tions	or	fragments),	copied	in	its	entirety,	or	placed	into	a	single	node	of	a	group	
of	nodes.	We	simplify	the	discussion	by	considering	only	one	group	(all	nodes)	
and	homogeneity	between	nodes,	in	order	to	concentrate	on	the	core	partitioning	
and	processing	issues.	Generically,	if	a	relation	is	large	or	very	large,	partitioning	
is	the	choice	that	drives	faster	processing.	On	the	other	hand,	very	small	relations	
can	be	replicated	to	avoid	the	need	to	repartition	other	very	large	datasets	that	may	
need	to	be	joined	with	them.	In	practice	the	decision	on	replication	vs.	partitioning	
for	each	relation	can	be	taken	by	a	cost-based	optimizer	that	evaluates	alternative	
execution	plans	and	partitioning	scenarios	to	determine	the	best	one.	Horizontally-
partitioned	relations	can	typically	be	divided	using	a	round-robin,	random,	range,	
or	hash-based	scheme.	We	assume	horizontal	hash-partitioning,	as	this	approach	
facilitates	key-based	tuple	location	for	parallel	operation.	Partitioning	is	intimately	
related to processing issues. Therefore, first we describe generic query processing
over	the	NPDW.	Then	we	focus	on	parallel	join	and	partitioning	alternatives.

Generic Processing over the NPDW

Query	processing	over	a	parallel	shared-nothing	database,	and	in	particular	over	the	
NPDW,	follows	roughly	the	steps	in	Figure	2(b).	Figure	2(a)	illustrates	a	simple	sum	
query	example	over	the	NPDW.	In	this	example	the	task	is	divided	into	all	nodes,	
so	that	each	node	needs	to	apply	exactly	the	same	initial	query	on	its	partial	data,	
and	the	results	are	merged	by	applying	a	merge	query	again	at	the	merging	node	
with	the	partial	results	coming	from	the	processing	nodes.	If	the	datasets	could	be	

Efficient and Robust Node-Partitioned Data Warehouses 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

divided	into	N	nodes	and	processed	independently,	each	node	would	process	its	part	
(1/N)	independently	with	a	speedup	of	approximately	N,	and	only	the	merge	part	
of	the	query	would	represent	extra	overhead.	
More	generically,	 the	 typical	query	processing	cycle	 implemented	by	 the	query	
processing	middle	layer	is	shown	in	Figure	2(b)	and	an	example	is	given	in	Fig-
ure	3.	A	query	is	executed	in	steps.	Step	1	“Rewrite	Query”	prepares	the	node	and	
merge	query	components	from	the	original	submitted	query.	Step	2	“Send	Query”	
forwards	the	node	query	into	all	nodes,	which	process	the	query	locally	in	step	3.	
Each	node	then	sends	its	partial	result	into	the	submitter	node	(step	4),	which	ap-
plies	the	merge	query	in	step	5.	Step	6	redistributes	results	into	processing	nodes	
if	required	(for	some	queries	containing	subqueries,	in	which	case	more	than	one	
processing	cycle	may	be	required).	The	query	processing	middle	layer	transforms	
queries	into	node	queries	and	controls	repartitioning	requirements	for	processing	
operations	such	as	parallel	join.	
In	steps	1	and	2	of	Figure	3	we	can	see	that	query	aggregation	expressions	are	re-
placed	by	aggregation	primitives	to	be	computed	at	each	node	and	merged	afterwards	
to	obtain	the	results.	The	most	common	primitives	are:	Linear	sum	(LS=SUM(X));	
Sum	of	squares	(SS=SUM(X2));	Number	of	elements	(N);	and	Extremes	(MAX	
and	MIN).
Although	in	Figure	3	every	node	computes	partial	aggregations	for	all	aggregation	
groups, aggregation can also be computed by assigning the computation of specific
aggregation groups to specific nodes (Shatdal & Naughton, 1995). A detailed study
and	evaluation	of	query	processing	 issues	 in	 the	NPDW	is	available	 in	Furtado	
(2005a).
The	repartitioning	operation	of	step	3R	in	Figure	2(b)	is	necessary	whenever	a	parti-
tioned	dataset	needs	to	participate	in	a	join	but	is	not	partitioned	by	the	join	attribute.	
Each	node	is	assigned	a	hash	range	for	the	join	key,	and	every	node	needs	to	send	to	

Figure 2. Query processing steps in NPDW: (a) example query (b) query process-
ing steps

(a) (b)

2�2 Furtado

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

every	other	node	the	tuples	it	has	that	belong	to	the	hash-range	corresponding	to	that	
node. It should be implemented as efficiently as possible to minimize the cost. We
assume	a	switched	network	(the	cost	of	repartitioning	would	be	larger	on	a	shared-
media	hub-based	network).	A	simple	parallel	repartitioning	algorithm	would	be:

Number	the	N	nodes	sequentially;
For	(i=1;i<N;i++)
Parallel:	every	node	j	sends	data	to	node	(j+i)	mod	N;

The	objective	of	this	algorithm	is	for	nodes	to	exchange	data	in	parallel,	to	reduce	
the	repartitioning	overhead.	In	practice,	the	fact	that	nodes	and	processing	at	nodes	
are	not	 homogeneous	 and	 that	 both	 switch	 and	nodes’	network	 interfaces	often	
limit	full	duplex	capability	and	performance	means	that	the	data	communication	
overhead	is	usually	larger	than	the	optimal	case.	Given	the	generic	query	process-
ing	architecture,	we	focus	next	on	partitioning	alternatives.	

Partitioning.vs..Replication in NPDW

Consider	relations	or	more	generically	datasets	R1	and	R2	that	must	be	joined	by	
an	equi-join	key	as	part	of	the	execution	plan:	 21 RAR .	Consider	also	that	R1	is	
fully	horizontally	partitioned	into	all	nodes	or	into	a	node	group.	Each	node	out	of	N	
should	process	only	1/N	of	the	total	work	in	order	to	take	full	advantage	of	parallel	
execution.	If	both	relations	are	partitioned	by	the	same	equi-join	key,	the	join	can	be	
processed	as	a	“Local.or.Co-located.Join”	(LocalJ)	and	this	is	the	fastest	alterna-

Figure 3. Basic aggregation query steps

0. Query submission:
Select	sum(a),	count(a),	average(a),	max(a),	min(a),	
stddev(a),	group_attributes	
From	fact,	dimensions	(join)
Group	by	group_attributes;

4. Results collecting:
Create	cached	table	
PRqueryX(node,	 suma,	 counta,	 ssuma,	 maxa,	
mina,	
group_attributes)	
as	<insert	received	results>;

3. Nodes compute partial results:
Select	sum(a),	count(a),	sum(a	x	a),	max(a),	min(a),	
group_attributes
From	fact,	dimensions	(join)
Group	by	group_attributes;

5..Results.merging:
Select	sum(suma),	sum(counta),	
sum(suma)	/	sum(counta),	max(maxa),	min(mina)
(sum(ssuma)-sum(suma)2)/sum(counta),	 group_
attributes
From	 UNION_ALL(PRqueryX),	 dimensions	
(join)
Group	by	group_attributes;

Efficient and Robust Node-Partitioned Data Warehouses 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

tive.	The	expression	 21 RAR 	is	processed	as	(2111 RAR)	U	…	U	(nRAnR 21

),	each	part	of	this	expression	in	a	different	node,	because	as	the	two	relations	are	
partitioned	by	the	equi-join	key,	the	join	between	two	fragments	in	different	nodes	
is	an	empty	set	(e.g., =2211 RAR).	Otherwise,	at	least	one	of	the	relations	must	
be	moved.	If	only	one	of	the	relations	or	neither	is	partitioned	on	the	join	key,	we	
can	dynamically	repartition	on	the	same	join	key	and	proceed	with	the	parallel	equi-
join—this	is	the	“Repartitioned.Join”	(RpartJ).	The	repartitioning	is	accounted	as	
an	extra	overhead,	which	increases	total	work	and	response	time	and	is	dependent	
on	data	buffering	and	communication-related	overheads.	On	the	other	hand,	if	one	
of	the	relations	is	replicated	by	placement,	the	join	can	proceed	independently	at	all	
nodes	regardless	of	the	partitioning	key	for	the	other	relation.	This	is	the	“Repli-
cated.Join”	(ReplicaJ).	In	a	replicated	join,	the	expression	 21 RAR 	is	processed	
as	(211 RR A

)	U	…	U	(21 RR An).	LocalJ	requires	the	datasets	involved	in	the	
join	to	be	co-located.	When	trying	to	co-locate	partitions	from	multiple	relations,	
the	partitioning	issue	that	arises	is	that	it	is	often	necessary	to	choose	which	join	
will	be	co-located.	For	example,	consider	the	join	 321 RRR BA

.	In	this	case	
R2	will	either	be	partitioned	on	A,	in	which	case	it	will	be	co-located	with	R1,	or	
on	B,	in	which	case	it	will	be	co-located	with	R3	(we	can	also	partition	R2	by	both	
attributes,	but	this	does	not	result	in	co-location).	
In	multidimensional	schemas	of	data	warehouses,	the	partitioning	issue	is	raised	as	
some	relations	(e.g.,	facts)	typically	hold	several	foreign	keys	to	other	relations	(e.g.,	
dimensions).	Furtado	(2004c)	searches	partitioning	keys	for	facts	that	increase	the	
amount	of	LocalJ	as	opposed	to	RpartJ	by	looking	at	the	query	workload.	
If	the	interconnections	are	slow	or	the	available	bandwidth	is	small,	a	replication	
strategy	using	ReplicaJ	may	be	preferable,	as	it	requires	no	or	little	data	exchange	
between	nodes.	Processing	with	 replicas	 follows	 the	 logic	of	 the	 “partition	and	
replicate	strategy”	(PRS)	(Yu	et	al.,	1989),	where	a	single	relation	is	partitioned	
and	the	remaining	ones	replicated.	The	actual	decision	on	whether	to	partition	or	
replicate	relations	requires	a	cost	model	that	we	review	later.

Partitioning.Strategies

In this section we define a set of strategies that take into consideration partitioning
and	replication.	In	the	following	section	a	generic	cost	model	will	also	be	presented.	
Consider	the	TPC-H	data	warehouse	schema	of	Figure	4	from	TPC	(1999).	It	con-
tains	several	large	relations,	which	are	frequently	involved	in	joins.	The	schema	
represents	ordering	and	selling	activity	(LI-lineitem,	O-orders,	PS-partsupp,	P-part,	
S-supplier,	C-customer),	where	relations	such	as	LI,	O,	PS,	and	even	P	are	quite	
large.	There	are	also	two	very	small	relations,	NATION	and	REGION,	not	depicted	
in the figure as they are very small and can be readily replicated into all nodes.

2�4 Furtado

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Figure	5(a)	shows	a	generic	query	Qa,	and	a	possible	“star-join”	execution	plan	for	
that	query	is	shown	in	Figure	5(b).	
Given	this	example	schema,	the	challenge	is	how	to	partition,	process,	and	provide	
availability to obtain an efficient low cost, platform-independent shared-nothing
data	warehouse.	We	wish	to	determine	what	would	be	a	good	partitioning	strategy	
to	process	queries,	considering	that	each	relation	could	either	be	fully	partitioned	
or	replicated.
In the next figures we represent the contents of each node: filled relation boxes rep-
resent replicated relations and partially-filled ones represent partitioned relations.
The	following	alternatives	will	be	considered:

•	 Partition.and.replicate.strategy.(PRS):.Partition	the	largest	relation	(LI	in	
TPC-H)	and	replicate	all	the	other	ones,	as	shown	in	Figure	6.	Each	node	stores	

GB
Lineitem	(LI) 78
Partsupp	(PS) 7.5

Orders	(O) 18
Part	(P) 2

Supplier	(S) 0.1
Customer	(C) 1.5

Figure 4. Summary of TPC-H schema: (a) TPC-H schema and (b) relation sizes
(100GB)

(a) (b)

Figure 5. Example query and possible execution plan (TPC-H): (a) generic query
Qa and (b) part of execution plan for Qa

Select..
sum(sales),	sum(costs),	sum(sales)-sum(cost),	n_nation,	o_year	
From..
part,	supplier,	
lineitem,	partsupp,	orders,	nation	
where..
<join	conditions>	
and	p_brand	=	x	
and	n_name	like	y	
and	o_orderpriority	=	‘w’	
and	ps_availqty	>	z	
group.by
n_nation,	o_year;		

(a) (b)

Efficient and Robust Node-Partitioned Data Warehouses 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

only	a	fraction	of	the	largest	relation	(LI)	and	replicas	of	all	other	relations.	All	
the	joins	are	ReplicaJ	in	this	case.	This	strategy	allows	joins	to	be	processed	
without	any	data	exchange	between	nodes,	but	 the	overhead	of	processing	
large	replicated	relations	can	be	prohibitive.

	 With	PRS,	the	join	execution	plan	of	Figure	5(b)	would	be	executed	without	
any	data	exchange	between	nodes,	but	each	node	would	need	to	process	full	
O	and	PS	relations,	which	are	18	and	7.5	GB	in	size	considering	TPC-H	with	
100	GB	(scale	factor	100).

 In order to avoid replicating very large relations, a modified strategy is to rep-
licate	dimensions	and	partition	every	fact,	while	also	co-locating	LI	and	O:

•	 Hash-partition.fact.and.replicate.dimensions.strategy.(PFRD-H):	Partition	
relations identified as facts by the user (LI, O, and PS in TPC-H), co-locating
LI	and	O.	With	PFRD-H,	the	execution	plan	of	Figure	4b	requires	repartition-
ing	of	only	two	datasets:	the	intermediate	result	LI-O-P-S	and	relation	PS.	The	
join	between	LI	and	O	is	a	LocalJ.	

•	 Workload-based partitioning (WBP):	A	 workload-based	 strategy	 where	
hash-partitioning	attributes	are	determined	based	on	schema	and	workload	
characteristics.	We	use	the	strategy	proposed	in	Furtado	(2004c).	The	parti-
tioning	algorithm	is:
1.		 Dimensions:.Small	dimensions	are	replicated	into	every	node	(and	op-

tionally	cached	into	memory).	Nonsmall	dimensions	can	simply	be	hash-
partitioned	by	their	primary	key.	This	is	because	that	attribute	is	expected	
to	be	used	in	every	equi-join	with	facts,	as	the	references	from	facts	to	
dimensions	correspond	to	foreign	keys.	

	 The	determination	of	whether	a	dimension	is	small	can	be	cost-based	or,	
for simplicity, based on a user-defined threshold (e.g., every relation with

Figure 6. Node contents for PRS and PFRD-H partitioning strategies: (a) PRS
partitioning, and (b) PFRD-H partitioning

(a) (b)

2�6 Furtado

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

less	than	250	MB	is	to	be	replicated	and	those	with	less	than	100	MB	are	
to	be	cached	into	memory	for	faster	access).	For	our	experiments	we	have	
used	this	simple	approach,	but	we	describe	a	cost	model	and	discuss	the	
search	for	optimal	partitioning	in	the	next	section.

2.		 Facts: The objective is to find the hash-partitioning attribute that mini-
mizes	repartitioning	costs.	A	reasonable	approximation	to	this	objective	
is	to	determine	the	most	frequent	equi-join	attribute	used	by	the	relation.	
To	do	this,	the	partitioning	strategy	looks	at	the	frequency	of	access	to	
other	partitioned	relations	and	chooses	the	most	frequent	equi-join	attri-
bute	with	those	relations	as	the	partitioning	attribute.	We	have	described	
this	process	in	the	second	section.	A	more	complex	approach	involves	
the	search	for	optimal	partitioning,	as	described	in	the	next	section.	

By	co-locating	relation	fragments	that	are	frequent	equi-join	targets,	this	simple	
strategy reduces significantly repartitioning requirements (we have determined ex-
perimentally	that	WBP	achieves	an	improvent	of	about	50%	over	straightforward	
primary-key	based	partitioning	(PK)	when	executing	the	query	of	Figure	5	under	
the	same	conditions	described	later	in	the	experiments).	
Figure	7	shows	the	partitioning	that	resulted	from	applying	the	WBP	strategy	to	
TPC-H	query	set.	Concerning	the	execution	plan	of	Figure	4b,	this	strategy	allows	
joins	LI	to	O	and	LI-O-P-S	to	PS	to	be	processed	as	LocalJ.	Repartitioning	is	nec-
essary	only	for	intermediate	dataset	LI-O.		

•	 WBP with bitmap join indexes (WBP+JB):	We	have	materialized	join	bitmaps	
in	every	node	for	attributes	(p_brand,	n_name,	o_orderpriority,	ps_availqty)	to	
speed	up	the	query	of	Figure	5.	For	instance,	before	scanning	the	LI	relation,	
the	associated	bitmap	join	indexes	such	as	the	one	for	Brand	x	is	scanned.	
This	way,	only	the	LI	rows	associated	with	Brand	x	are	processed	any	further,	
including	repartitioning	data.				

Figure 7. WBP partitioning

Efficient and Robust Node-Partitioned Data Warehouses 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

In	the	next	section	we	review	a	generic	cost	model	for	the	strategies,	taking	into	
account	factors	such	as	the	number	of	nodes	and	network	bandwidth.	

Cost.Model

The	main	processing	costs	(listed	next)	are	repartitioning,	data	communication,	lo-
cal	processing,	and	merging:

a.	 Repartitioning.cost.(RC):	Partitioning	a	relation	consists	of	retrieving	the	
relation	 from	secondary	memory,	dividing	 it	 into	 fragments	by	applying	a	
hash	function	to	a	join	attribute,	and	assigning	buffers	for	the	data	to	send	to	
other	nodes.	Repartitioning	is	similar	but	involves	a	fragment	in	each	node.	
Multiple	nodes	can	rehash	and	exchange	relation	fragments	simultaneously.	

b.	 Data.communication.cost.(DC):	The	data	communication	cost	is	monotoni-
cally	increasing	with	the	size	of	the	data	transferred.	We	assume	a	switched	
network,	as	this	allows	different	pairs	of	nodes	to	send	data	simultaneously	
(with	no	collisions).	This,	in	turn,	allows	the	repartitioning	algorithm	to	be	
implemented more efficiently.

c.	 Local.processing.cost.(LC):	The	local	processing	cost	for	the	join	operation	
typically	depends	on	whether	the	join	is	supported	by	fast	access	paths	such	
as	indexes	and	the	size	of	the	relations	participating	in	the	join.	For	simplic-
ity,	we	assume	these	costs	also	increase	monotonically	on	the	relation	sizes,	
although,	in	practice,	this	depends	on	several	parameters,	including	memory	
buffer	size.	

d.	 Merging.cost.(MC): The merging cost is related to applying a final query to
the	collected	partial	results	at	the	merging	node.	We	do	not	consider	this	cost	
as	it	is	similar	in	every	case	and	independent	of	the	other	ones.	

Given	these	items,	the	next	objective	is	to	represent	the	cost	as	an	expression	in-
volving	 the	 local	processing	and	repartitioning	costs	 (here	we	consider	 the	data	
communication cost within the repartitioning cost). We define weighting parameters
as in Sasha et al. (1991): a partitioning cost weight, β, and a local processing cost
weight, α, so that β/α denotes the ratio of partitioning costs to local processing costs,
for	example,	~2	(Sasha	et	al.,	1991).	A	cost-based	optimizer	is	used	to	determine	
the	most	appropriate	execution	plan	(Kossman	&	Stocker,	2000;	Steinbrunn	et	al.,	
1997).	A	join	order	determines	the	order	by	which	relations	are	joined.	Assuming	
the	datasets	are	joined	using	an	algorithm	such	as	parallel	hybrid	hash-join,	at	each	
step	an	additional	relation	is	joined	to	the	current	intermediate	result	set	IRi	(selec-

2�8 Furtado

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

tion	and	projection	operators	are	applied	as	soon	as	possible	to	reduce	the	size	of	
the	datasets	that	need	to	be	processed).	Given	the	result	set	IRi	and	a	relation	Rj,	
equations	(1)	and	(2)	represent	the	processing	costs	for	a	single	server	and	a	node-
partitioned	system	where	Rj	is	replicated	into	all	nodes	and	IRi	is	partitioned:
	 	 	
one server system	:	 ()a× i jIR + R 		 	 	 	 	 	 								(1)

replicated join	:	 a×

i
j

IR + R
N

	
	 	 	 	 	 	 								(2)

Equations	(3)	and	(4)	represent	the	local	processing	cost	(LC)	and	repartitioning	
cost	(RC)	when	both	datasets	are	partitioned.	The	RC	cost	in	(4)	is	only	incurred	
when	the	datasets	are	not	co-located.

LC for local join	:	
a×

R
jiIR +

N N
	
	 	 	 	 	 	 								(3)

RC non – colocated data sets	:	 2

β× −

IR IR
i i

N N
	
	 	 	 	 	 								(4)

The	value	IRi/N	in	equation	(4)	is	the	fraction	of	the	IRi	that	is	at	each	node	and	
IRi/N

2	is	the	fraction	of	that	quantity	that	already	has	the	correct	hash-value	for	that	
node,	therefore	requiring	no	repartitioning.	
By	subtracting	(3)	from	(2)	we	get	the	advantage	of	partitioning	over	replicating	
when	both	datasets	are	co-located.	However,	if	the	datasets	are	not	co-located,	we	
must subtract equation (4) from this value. If β is large (small available bandwidth),
this	RC	cost	can	become	dominant	and	replication	becomes	the	best	choice.
The	WBP	strategy	improves	the	performance	of	the	system	by	making	each	node	
process	1/N	of	relations	and	intermediate	results	as	much	as	possible	(3)	and	simul-
taneously	reducing	repartitioning	requirements	(4)	by	placing	datasets	based	on	the	
workload.	On	the	other	hand,	PRS	focuses	on	eliminating	repartitioning	require-
ments	(4)	to	handle	contexts	with	low	bandwidth,	but	on	the	other	hand,	it	needs	to	
process	whole	relations	(2).	Finally,	WBP-JB	uses	bitmaps	over	the	nodes	to	avoid	
the	repartitioning	cost	(4)	(and	simultaneously	also	reducing	local	processing	costs).	
Given	a	cost	model,	a	cost-based	optimizer	evaluates	the	cost	of	alternative	execu-
tion	plans	(including	join	orders)	for	alternative	partitioning	options	(partition	or	
replicate	relations).	In	practice,	this	cost	model	is	replaced	by	evaluating	the	cost	
of	operations	as	our	simulator	described	next	does.				

Efficient and Robust Node-Partitioned Data Warehouses 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Comparative.Analysis. of.................
Partitioning.Alternatives

The	partitioning	strategies	described	before	can	be	characterized	as	more	replica-
tion-oriented	 (PRS,	 PFRD-H)	 and	 more	 partitioning-oriented	 (WBP,	WBP+JB)	
ones. Partitioning-oriented strategies are very efficient in an environment with fast
interconnections	and	available	bandwidth,	because	repartitioning	is	cheap	in	those	
environments.	On	the	other	hand,	the	advantage	of	PRS	(and	PFRD-H)	is	that	it	
places	lower	requirements	on	the	interconnections,	with	fewer	data	exchange	re-
quirements.	However,	the	drawback	is	the	size	of	replicated	relations	that	must	be	
processed	in	every	node.	Our	comparative	analysis	is	based	both	on	a	simulator	
environment, to test several possible configurations (e.g., number of nodes, avail-
able	bandwidth)	and	actual	executions	to	help	validate	the	results	and	analyze	the	
strategies	for	TPC-H	query	set.		
We	have	built	a	discrete-event	simulation	environment,	which	uses	a	basic	set	of	
parameters	listed	in	Figure	8.	The	simulator	estimates	the	cost	of	individual	opera-
tions	that	need	to	be	performed	to	execute	the	query.	Operation	tasks	are	submitted	
as	required	and	resource	utilization	for	disk	access,	memory	and	bus,	processor,	and	
network	send/receive	are	used	to	determine	completion	time	for	those	tasks.	For	
instance,	the	cost	of	a	hybrid	hash-join	is	related	to	the	cost	of	scanning	the	rela-
tions	from	secondary	storage,	bucketizing	them,	building	a	hash	table,	and	probing	
into	the	hash	table.	For	instance,	the	cost	to	join	relations	R1	and	R2	considering	
the	individual	scan	costs	is	scanR1	+	scanR2	+	2(scanR1	+	scanR2)	(1-q),	where	q	
denotes the fraction of R1 whose hash-table fits in memory (Steinbrunn et al., 1997).
Disk	access	rates	(measured	in	MB/sec)	are	then	used	to	complete	the	evaluation	
of	the	cost.	Similar	strategies	are	applied	to	evaluate	the	repartitioning	cost,	which	
involves	scanning	the	datasets,	operating	on	them,	assigning	buffers,	and	sending	to	
destination	nodes	(with	given	network	bandwidth	in	MB/sec).	A	typical	number	of	
instructions	used	to	process	different	low-level	operations	and	to	send	and	receive	
messages	(Network)	were	included	as	a	parameter	to	the	simulator	(Stöhr,	Märtens	
&	Rahm,	2000).	For	these	experiments	we	used	a	TPC-H	with	100	GB	and	generic	
query	Qa	of	Figure	5a,	with	default	selectivity	for	attribute	values	(x,	y,	w,	z)	of	
(0.7,	0.7,	0.2,	0.2)	respectively.	
Figure	9	shows	the	response	time	(a)	and	speedup	(b)	vs.	the	nº	of	nodes	for	query	Qa.
The	performance	of	replica-based	strategies	(especially	PRS)	is	much	worse	than	
partitioning-based	 ones	 (WBP,	WBP+JB),	 because	 nodes	 have	 to	 process	 large	
replicated	datasets.	Additionally,	 (WBP+JB)	 improves	 response	 time	 further,	 as	
early-selection	 functionality	 reduces	 the	amount	of	data	 that	must	be	processed	
and	repartitioned.	Of	course	bitmap	join	indexes	must	be	available	and	their	useful-
ness	depends	on	the	selectivity	of	query	select	conditions.	On	the	other	hand,	if	the	

220 Furtado

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

available	network	bandwidth	is	low,	strategies	using	replicas	(e.g.,	PRS,	PFRD-H)	
can	exhibit	better	performance	relative	to	those	relying	on	partitioning	(WBP),	as	
shown	in	Figure	10a.	Still,	early-selection	(WBP+JB)	was	the	best	strategy	because	
it	is	not	very	dependent	on	repartitioning.	
We	also	subjected	our	simulator	to	conformance	tests,	to	evaluate	whether	its	simu-
lation is sufficiently accurate for our purposes. Figure 11 shows a result from those
tests.	We	ran	WBP	and	PRS	on	a	system	with	the	characteristics:	TPC-H	25GB;	
commercial	DBMS;	each	node	with	3	GHz	Intel	Pentium	4	processor;	1	GB	memory;	
200	GB	SATA	II	disk;	1	GB/s	network;	query	Qa).	Cost-based	optimization	was	used,	
the	schema	objects	were	analyzed	and	the	best	query	plan	suggestion	was	chosen	
(the	default	execution	plan	had	very	bad	performance	for	PRS).	The	results	show	

Disk Processing Nº	Instrs. Network

seek	time 10	ms read	page 3,000
connection	
speed	
(default)

100	MB/s

settle	time	+	ctrller	
delay

per	access	3	ms	+	
1	ms	per	page

process	
bitmap	
page

1,500 send	
message 1,000	+	#B	instructions

Seq.	transfer	rate	
/	node 100MB/s

extract	&	
hash/probe	
table	row

250 receive	
message 1,000	+	#B	instructions

CPU.speed 50	MIPS message	size	
(small) 128	B

Memory.Buffer 500MB/node message	size	
(large) 1	page	(4	KB)

Figure 8. Basic parameters for simulation

Figure 9. Response time and speedup VS Nº of nodes (100 MB/s) (log-plots): (a)
RT vs Nº of nodes and (b) speedup vs nº of nodes

�0

�00

�000

�0 2� �0 �� �00 2�0

nº of nodes

re
sp

on
se

 t�
m

e
(s

ec
s)

�

�0

�00

�000

�0 2� �0 �� �00 2�0
nº of nodes

Sp
ee

du
p

PRS

PFRD-H

WBP

WBP+JB

(a) (b)

Efficient and Robust Node-Partitioned Data Warehouses 22�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

that	the	simulated	response	time	was	reasonably	accurate.	Although	its	prediction	
for	PRS	was	slightly	higher	than	the	actual	response	time	for	a	number	of	nodes	
above	100,	the	advantage	of	WBP	is	still	very	evident	from	these	results.		
Finally,	we	also	ran	the	whole	TPC-H	query	set	against	WBP	and	PRS	to	compare	
replication	vs.	partitioning	on	the	following	system:	25	nodes;	TPCH	50	GB;	each	
node	with	Pentium	III	866	MHz	CPU;	80	GB	IDE	hard	disks;	512	MB	of	RAM;	100	
MB/s	switched	network).	For	these	results	we	consider	TPC-H	query	set	divided	
into	groups	(Figure	12)	according	to	sizes	of	replicated	relations	accessed	and	pro-
cessed	by	the	joins.	Group	G1	accesses	only	a	partitioned	relation	(LI	or	PS).	The	
other	groups	include	references	to	replicated	relations	with	sizes	in	the	following	
intervals:* Small: (0, 500MB); Medium: (500 MB, 5 GB); Large (5 GB, ∞).
The	speedup	intervals	(T	lines)	of	Figure	13	are	the	range	of	speedup	values	consid-
ering	all	queries	in	a	group.	From	the	results	we	can	see	that	the	larger	the	replicated	
relations,	the	smallest	the	PRS	speedup	(G2,	G3,	and	G4),	with	a	large	penalty	for	
processing	heavy	ReplicaJ	 joins.	WBP	achieved	a	near-to-linear	speedup	for	all	
queries,	while	PRS	revealed	very	low	speedup	for	most	queries.	

Figure 10. RT vs. Mbps (100 nodes)

Figure 11. Simulation vs. real execution (25 GB, 1Gbps)

�0

�00

�000

�0000

� �0 �00 �000
Mbps

re
sp

on
se

 t�
m

e
(s

ec
s) PRS

PFRD-H

WBP

WBP+JB

	

0

200

400

600

800

�0 �0 �00 200
nº of nodes

re
sp

on
se

t t
�m

e
(s

ec
s)

WBP-real
PRS-real
WBP-simula
PRS-simula

222 Furtado

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Replication for Nonstop
Availability on NPDW

In this section we discuss briefly alternative replication choices within the NPDW
for always-on, always efficient processing and allowing multiple nodes off-line si-
multaneously	for	data	loading,	maintenance,	and	other	DBA	functionality.	Figure	
14	shows	the	schema	of	a	node	X	with	availability-related	replica	from	another	
node	Y.	Notice	that	some	relations	are	already	replicated	by	placement	(S	and	C).	
Node	X	can	now	replace	node	Y	in	case	of	unavailability	of	Y	by	simply	including	
Y	partitions	in	the	processing.	
The	simplest	replica	placement	strategy	involves	replicating	each	node’s	data	into	
at	least	one	other	node—full	replicas	(FRs).	In	case	of	failure	of	one	node,	a	node	
containing	the	replica	resumes	the	operation	of	the	failed	node.	A	simple	placement	
algorithm	considering	R	replicas	is:

Number	nodes	linearly;
For	each	node	i

	 For	(replica	=1	to	R)	data	for	node	i	is	also	placed	in	node	(i+R)	MOD	N;

G1 G2 G3 G4

Partitioned Partitioned	+	Medium	
Replicated Partitioned	+	Large	Replicated Partitioned	+	Large	Replicated	+	

Medium	Replicated

Q1,	Q6,	Q15 Q11,Q14,Q19 Q3,	Q5,	Q7,	Q9,	Q10,	Q12,	Q16 Q4,	Q8,	Q13,	Q22

Figure 12. Size and layout of relations involved in parallel join over PRS

Figure 13. Grouped speedup results for PRS and WBP over 25 nodes

0

�0

20

�0

40

G�:Part�t�oned G2:Part�t�oned +
Medium

Replicated

G�:Part�t�oned +
Large Replicated

G�:Part�t�oned +
Large Replicated

+ Medium
Replicated

Sp
ee

du
p

/ 2
5

PRS WBP

Efficient and Robust Node-Partitioned Data Warehouses 22�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

This	simple	strategy	allows	the	system	to	work	with	unavailable	nodes	and	it	is	
possible	to	take	more	than	one	node	off-line	simultaneously.	The	major	drawback	is	
processing efficiency when unavailability of a few nodes occur: consider a NPDW
system	with	N	homogeneous	nodes.	Although	normally	each	node	contains	and	
processes	about	1/N	of	the	data,	if	one	node	fails,	the	node	replacing	it	with	a	rep-
lica	will	have	to	process	twice	as	much	data	(2/N),	even	though	all	the	other	nodes	
will	process	only	1/N.	The	replica	effort	is	placed	on	a	single	node,	even	though	
other	nodes	are	less	loaded.	
An	alternative	to	full	replicas	is	to	use	fully	partitioned	replicas	(FPR)—replicas	are	
partitioned	into	as	many	slices	as	there	are	nodes	minus	one.	If	there	are	N	nodes,	a	
replica	is	partitioned	into	N-1	slices	and	each	slice	is	placed	in	one	node.	The	rep-
lica	of	node	i	is	now	dispersed	into	all	nodes	except	node	i.	In	order	to	allow	up	to	
R	nodes	to	become	unavailable,	there	must	be	R	nonoverlapping	replica	slice	sets.	
Two	replicas	are	nonoverlapped	if	the	equivalent	slices	of	the	two	replicas	are	not	
placed	in	the	same	node.	The	following	placement	algorithm	is	used:

Number	nodes	linearly;
The	copy	of	the	data	of	node	i	is	partitioned	into	N-1	numbered	slices,	starting	at	1.	
For	j=0	to	R:	

	 For	(slice	x	from	1	to	N-1)	Place	slice	x	in	node	(i+j+	x)	MOD	N

This strategy is the most efficient because, considering N nodes, each replica slice
has	1/(N-1)	of	the	data	and	each	node	has	to	process	only	that	fraction	in	excess	in	
case	of	a	single	node	becoming	unavailable.	However,	all	nodes	that	remain	active	
are	needed	to	process	a	slice	from	the	replica.	In	order	to	allow	up	to	R	nodes	to	
become	unavailable,	there	must	be	R	nonoverlapping	replica	slice	sets.
If	we	desire	y	nodes	to	be	able	to	be	off-line	simultaneously	when	a	single	replica	

G1 G2 G3 G4

Partitioned Partitioned	+	Medium	
Replicated Partitioned	+	Large	Replicated Partitioned	+	Large	Replicated	+	

Medium	Replicated

Q1,	Q6,	Q15 Q11,Q14,Q19 Q3,	Q5,	Q7,	Q9,	Q10,	Q12,	Q16 Q4,	Q8,	Q13,	Q22

Figure 14. Schema in node X with replicated schema from node Y

224 Furtado

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

is	used,	then	the	y	nodes	must	not	contain	replica	slices	of	each	other.	Partitioned	
replicas	(PRs).guarantee	this	by	creating	groups	and	placing	replica	slices	from	one	
group	in	a	different	group.	This	way	we	can	take	a	whole	group	off-line	simultane-
ously	for	maintenance	or	other	functionality,	because	the	complete	set	of	replica	
slices	are	elsewhere.	This	strategy	is	a	hybrid	between	FPR	and	FR.
If	replicas	are	partitioned	into	x	slices,	we	denote	it	by	PR(x).	If	x =	N,	we	have	a	
fully	partitioned	replica.	A	very	simple	algorithm	to	generate	less	than	N	slices	is:	

Number	nodes	linearly;
The	data	for	node	i	is	partitioned	into	X	slices	starting	at	1;	
For	slice	set	j	=	0	to	R	

	 For	(slice	x	from	1	to	X)	Place	slice	x	in	node	(i+j+	x)	MOD	N

Figure	15	compares	the	response	time	<min:sec>	(line)	for	query	TPC-H	Q9	and	the	
minimum	number	of	replicas	needed	(bars)	when	5	out	of	20	nodes	are	off-line	using	
full	replicas	(FRs),	fully	partitioned	replicas	(FPRs),	and	partitioned	replicas	(PRs).	
These	results	were	obtained	in	a	system	with	the	characteristics:	50	GB	TPC-H;	20	
nodes,	each	with	866	MHz	processor;	512	MB	RAM).	The	alternatives	compared	
are:	online—every	node	is	online;	FPR—fully	partitioned	replicas;	PR(10)—par-
titioned	replicas	with	two	groups	of	10	nodes;	PR(5)—partitioned	replicas	with	4	
groups	of	5	nodes.	These	results	show	the	much	larger	penalty	incurred	by	FR	and	
the	excessive	number	of	replicas	required	for	FPR	to	allow	5	nodes	off-line	simulta-
neously.	PR(10)	(partitioned	replicas	with	two	10	element	groups)	is	a	good	choice,	
as	it	requires	a	single	replica	and	obtains	a	good	response	time	simultaneously.	
Given	these	results,	we	conclude	that	replicas	partitioned	by	groups	are	the	most	
advantageous alternative for NPDW if we consider both performance and flexibil-
ity	in	allowing	multiple	nodes	to	be	taken	off-line	simultaneously	for	maintenance	
and	loading	reasons.

Figure 15. Response time and replicas when 5 out of 20 nodes are off-line (aver-
age over TPC-H)

0

�

�

�

onl�ne FPR PR(�0) PR(�) FR

nr
 o

f r
ep

lic
as

00:00

��:��

2�:0�

�4:��

re
sp

on
se

 t�
m

e
(m

�n
:s

ec
)

Nº of Replicas
Response T�me (m�n:sec)

Efficient and Robust Node-Partitioned Data Warehouses 22�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Future.Trends

The	NPDW	is	the	basic	design	for	the	Data	Warehouse	Parallel	Architecture	Project	
(DWPA,	2005),	which	focuses	on	architectural	characteristics,	automatic	reorga-
nization,	load	balancing,	response	time	prediction,	and	automatic	adaptability	for	
the	low-cost	node-partitioned	data	warehouse.	These	are	in	line	with	current	and	
future	trends	on	database	research	in	related	issues,	which	include	database	self-
tuning and autoconfiguration (Chaudhuri & Weikum, 2002; Schiefer & Valentin,
1999;	 Weikum,	 Moenkeberg,	 Hasse,	 &	 Zabback,	 2002).	 Runtime	 prediction	 is	
also	an	important	objective	for	current	and	future	research	on	database	engines.	
There	are	very	interesting	recent	works	on	runtime	estimation	and	improvement	
(Chaudhuri,	Narasayya,	&	Ramamurthy,	2004;	Luo,	Naughton,	Ellmann,	&	Watz-
ke,	2004)	that	can	be	usefully	adapted	to	parallel	settings	and	in	particular	to	the	
NPDW	environment.	There	is	nowadays	a	market	trend	towards	more	and	more	
open-source	software,	including	open-source	database	engines	being	deployed	in	
organizations	and	cost-consciousness	in	both	hardware	and	software	platforms	is	
increasingly	important.	In	this	context,	the	DWPA	concept	of	an	architecture	that	
can run anywhere efficiently and adaptively also seems to be in line with current
trends.	Besides,	many	of	the	issues	discussed	in	this	chapter	can	also	be	applied	to	
other	parallel	architectures	that	are	increasingly	deployed,	in	particular	symmetric	
multiprocessors	(SMP)	and	clusters	of	SMPs.	

Conclusion

We	have	discussed	design	issues	for	low-cost	alternatives	to	specialized,	fast,	and	
fully-dedicated	parallel	hardware	to	handle	large	data	warehouses.	The	idea	is	to	
design	the	system	with	special	care	concerning	partitioning	for	placement	and	re-
organization	 and	 also	 concerning	 availability.	Alternative	 partitioning	 strategies	
were	proposed	and	their	performance	compared.	We	have	tested	replica-based	and	
partitioned-based	strategies	and	analyzed	their	performance	vs.	the	number	of	nodes	
and	available	network	bandwidth.	We	also	tested	the	use	of	early	selection	with	
join	bitmaps	as	an	approach	to	overcome	extra	overheads	related	to	repartitioning	
and	overall	processing.	We	concluded	that	workload-based	partitioning	is	a	suitable	
strategy, and join bitmaps not only improve speedup but also prevent significant
slowdown	when	the	available	network	bandwidth	is	low.	We	have	also	described	
replication-based availability that allows always-on behavior and efficiency when
multiple	nodes	are	taken	off-line.	

226 Furtado

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Acknowledgments

This	work	was	supported	in	part	by	the	Portuguese	“Fundação para	a	Ciência	e	
Tecnologia,”	under	project	POSC/EIA/57974/2004.

References

Bernstein,	P.	A.,	&	Chiu,	D.	M.	(1981).	Using	semi-joins	to	solve	relational	queries.
Journal of the ACM,	28(1),	25-40.

Chan	C.-Y.,	&	 Ioannidis,	Y.	E.	 (1998).	Bitmap	 index	design	 and	 evaluation.	 In	
Proceedings of the International Conference on the Management of Data	
(pp.	355-366).

Chaudhuri,	S.,	Narasayya,	V.,	&	Ramamurthy,	R.	(2004).	Estimating	progress	of	
execution	for	SQL	queries.	In	Proceedings of the ACM International Confer-
ence on Data Management,	Paris.

Chaudhuri,	S.,	&	Weikum,	G.	 (2002).	Rethinking	database	 system	architecture:	
Towards	a	self-tuning,	RISC-style	database	system.	In	Proceedings of Very
Large Databases Conference.

Copeland,	G.,	&	Keller,	T.	 (1989).	A	comparison	of	high-availability	media	 re-
covery	techniques.	In	Proceedings of the ACM International Conference on
Management of Data.

Coulon,	C.,	Pacitti,	E.,	&	Valduriez,	P.	(2004,	June	28-30).	Scaling	up	the	preven-
tive	replication	of	autonomous	databases	in	cluster	systems.	In	Proceedings
of the 6th International Vecpar Conference,	Valencia,	Spain.

DeWitt,	D.,	&	Gray,	J.	(1992).	The	future	of	high	performance	database	processing.	
Communications of the ACM,	35(6).

DWPA.	(2005-2008).	Fundação para a Ciência e a Tecnologia (Research	and	De-
velopment	Project	POSI/EIA/57974/2004	of	FCT),	Portugal.	

Furtado, P. (2004a, July). Hash-based placement and processing for efficient node
partitioned	query-intensive	databases.	In	Proceedings of the Tenth Interna-
tional Conference on Parallel and Distributed Systems	(pp.	127-134).	Newport	
Beach,	California.	

Furtado,	P.	 (2004b,	September).	Workload-based	placement	and	 join	processing	
in	 node-partitioned	 data	 warehouses.	 In	 Proceedings of the International
Conference on Data Warehousing and Knowledge Discovery	 (pp.	 38-47).
Zaragoza,	Spain.

Efficient and Robust Node-Partitioned Data Warehouses 22�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Furtado,	P.	 (2004c,	November).	Experimental	evidence	on	partitioning	in	paral-
lel	 data	warehouses.	 In	Proceedings of the ACM DOLAP 04 Workshop of
the International Conference on Information and Knowledge Management,	
Washington.

Furtado, P. (2005a, May). Efficiently processing query-intensive databases over a
non-dedicated	local	network.	In	Proceedings of the 19th International Parallel
and Distributed Processing Symposium,	Denver,	Colorado.

Furtado,	P.	 (2005b,	April).	The	 issue	of	 large	 relations	 in	node-partitioned	data	
warehouses.	 In	 Proceedings of the International Conference on Database
Systems for Advanced Applications,	Beijing,	China.

Furtado,	P.	(2005c,	August).	Replication	in	node	partitioned	data	warehouses.	In	
Proceedings of the VLDB Ws. on Design, Implementation, and Deployment
of Database Replication,	Trondheim,	Norway.

Hsiao,	H.,	&	DeWitt,	D.	(1990a).	Chained declustering: A new availability strategy
for multi-processor database machines.	Paper	presented	at	the	International	
Conference	on	Data	Engineering.

Hsiao,	H.,	&	DeWitt,	D.	 (1990b).	 Replicated data management in the Gamma
Database Machine.	Paper	presented	at	the	Workshop	on	the	Management	of	
Replicated	Data.

Hsiao,	H.,	&	DeWitt,	D.	J.	(1991).	A	performance	study	of	three	high	availability	
data	 replication	 strategies.	 In	 Proceedings of the Parallel and Distributed
Systems.	

Hua,	K.	A.,	&	Lee,	C.	(1990,	August).	An	adaptive	data	placement	scheme	for	par-
allel	database	computer	systems.	In	Proceedings of the Sixteenth Very Large
Data Bases Conference	(pp.	493-506).	Brisbane,	Queensland,	Australia.	

Kimball,	R.,	Reeves,	L.,	Ross,	M.,	&	Thornthwaite,	W.	(1998).	The data warehouse
life cycle toolkit.	John	Wiley	&	Sons.

Kitsuregawa,	M.,	Tanaka,	H.,	&	Motooka,	T.	(1983).	Application	of	hash	to	database	
machine	and	its	architecture.	New Generation Computing,	1(1),	63-74.	

Lin,	Y.,	Kemme,	B.,	&	Jimenez-Peris,	R.	(2005,	August	30-September	2).	Consistent	
data	replication:	Is	it	feasible	in	WANs?	In Proceedings of the 11th International
Europar Conference,	Lisboa,	Portugal.

Luo,	G.,	Naughton,	J.	F.,	Ellmann,	C.	J.,	&	Watzke,	M.	W.	(2004).	Toward	a	prog-
ress	indicator	for	database	queries.	In	Proceedings of the ACM International
Conference on Data Management,	Paris.

O’Neil,	P.,	&	Graefe,	G.	(1995).	Multi-table	joins	through	bitmapped	join	indices.
SIGMOD Record, 24(3),	8-11.

228 Furtado

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Pacitti,	E.,	Özsu,	M.,	&	Coulon,	C.	(2003,	August	26-29).	Preventive	multi-master	
replication	 in	a	cluster	of	autonomous	databases.	 In	Proceedings of the 9th
International Europar Conference,	Klagenfurt,	Austria.

Patterson,	D.	A.,	Gibson,	G.,	&	Katz,	R.	H.	(1998,	June).	A	case	for	redundant	arrays	
of	inexpensive	disks	(raid).	In	Proceedings of the International Conference
on Management of Data	(pp.	109-116).	Chicago.

Rao,	J.,	Zhang,	C.,	Megiddo,	N.,	&	Lohman,	G.	(2002,	June).	Automating	physical	
database	design	in	a	parallel	database.	In	Proceedings of the ACM International
Conference on Management of Data	(pp.	558-569).	Madison.

Rousopoulos,	R.	(1998).	Materialized	views	and	data	warehouses.	SIGMOD Re-
cord, 27(1),	21-26.

Saborit, J. A., Mulero, V. M., & Pey, J. L. (2003). Pushing down bit filters in the
pipelined	execution	of	large	queries.	In	Proceedings of the	International Con-
ference Europar	(pp.	328-337).

Schiefer,	B.,	&	Valentin,	G.	(1999).	DB2	universal	database	performance	tuning.	
IEEE Data Engineering Bulletin, 22(2),	12-19.

Shatdal,	A.,	&	Naughton,	J.	(1995,	May	22-25).	Adaptive	parallel	aggregation	algo-
rithms.	In	Proceedings of the 1995 International Conference on Management
of Data,	San	Jose,	California	(pp.	104-114).

Stöhr,	T.,	Märtens,	H.,	&	Rahm,	E.	(2000).	Multi-dimensional	database	allocation	
for	parallel	data	warehouses.	In	Proceedings of the 26th International Confer-
ence on Very Large Databases (VLDB), Cairo,	Egypt.

Tandem.	(1987,	September).	NonStop	SQL,	a	distributed,	high-performance,	high-
reliability	implementation	of	SQL.	Paper	presented	at	the	Workshop on High
Performance Transactional Systems,	California.

Teradata.	(1985,	November).	Teradata DBC/1012 Database Computer System Ma-
nual 2.0, C10-0001-02.	Author.

TPC.	(1999,	June).	TPC Benchmark H, Transaction Processing Council.	Retrieved	
June	13,	2006,	from	http://www.tpc.org/

Valduriez,	P.,	&	Ozsu,	M.	(1999).	Principles of parallel and distributed database
systems	(3rd	ed.).	Prentice	Hall.

Weikum,	G.,	Moenkeberg,	A.,	Hasse,	C.,	&	Zabback,	P.	(2002).	Self-tuning	data-
base	technology	and	information	services:	From	wishful	thinking	to	viable	
engineering.	In	Proceedings of the Very Large Databases Conference.

Williams,	M.,	&	Zhou,	S.	 (1998).	Data	placement	 in	parallel	database	systems:	
Parallel	database	techniques. IEEE Computer Society Press	(pp.	203-219).

Yu,	C.	T.,	Guh,	K.	C.,	Brill,	D.,	&	Chen,	A.	L.	P.	(1989,	June).	Partition	strategy	
for	distributed	query	processing	in	fast	local	networks.	IEEE Transactions on
Software Engineering, 15(6),	780-793.

Efficient and Robust Node-Partitioned Data Warehouses 22�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Yu,	C.	T.,	&	Meng,	W.	(1998).	Principles of database query processing for advanced
applications.	Morgan	Kaufmann.

Zilio,	D.	C.,	Jhingran,	A.,	&	Padmanabhan,	S.	(1994).	Partitioning key selection
for a shared-nothing parallel database system	(IBM	Research	Rep.	No.	RC	
19820	(87739)).	IBM.

2�0 Röhm

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Chapter.X

OLAP.with.a.
Database Cluster

Uwe Röhm
University of Sydney, Australia

Abstract

This chapter presents a new approach to online decision support systems that is
scalable, fast, and capable of analysing up-to-date data. It is based on a database
cluster: a cluster of commercial off-the-shelf computers as hardware infrastructure
and off-the-shelf database management systems as transactional storage managers.
We focus on central architectural issues and on the performance implications of
such a cluster-based decision support system. In the first half, we present a scal-
able infrastructure and discuss physical data design alternatives for cluster-based
online decision support systems. In the second half of the chapter, we discuss query
routing algorithms and freshness-aware scheduling. This protocol enables users to
seamlessly decide how fresh the data analysed should be by allowing for different
degrees of freshness of the online analytical processing (OLAP) nodes. In particular
it becomes then possible to trade freshness of data for query performance.

OLAP with a Database Cluster 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Introduction

Online	analytical	processing	(OLAP)	systems	must	cope	with	huge	volumes	of	data	
and	at	the	same	time	must	allow	for	short	response	times	to	facilitate	interactive	
usage.	They	must	also	be	capable	to	scale,	meaning	to	be	easily	extensible	with	the	
increasing	data	volumes	accumulated.	Furthermore,	the	requirement	that	the	data	
analysed	should	be	up-to-date	is	becoming	more	and	more	important.	However,	not	
only	are	these	contrary	requirements,	but	they	also	run	counter	to	the	performance	
needs	of	the	day-to-day	business.
Most	OLAP	systems	nowadays	are	kept	separated	from	mission	critical	systems.	
This	means	that	they	offer	a	compromise	between	“up-to-dateness,”	that	is,	fresh-
ness	(or	currency)	of	data,	and	query	response	times.	The	data	needed	are	propa-
gated	into	the	OLAP	system	on	a	regular	basis,	preferably	when	not	slowing	down	
day-to-day	business,	for	example,	during	nights	or	weekends.	OLAP	users	have	no	
alternative	but	to	analyse	stale	data.	
But	a	decision	support	system	that	could	provide	decision	makers	insight	into	up-to-
date	data	“hot	off	the	press”	would	open	exciting	new	possibilities.	A	stockbroker,	
for	example,	could	analyse	current	trends	in	the	market	online.	For	e-commerce,	the	
personalisation	of	Web	shops	could	be	much	improved	by	more	complex	analysis	of	
current	browsing	behaviour.	Even	for	the	so-called	“old	economy,”	new	perspectives	
open	up,	because	the	update	window	has	already	become	drastically	small	in	a	24/7	
setting	of	a	worldwide	operating	company.	However,	up	to	now	there	is	no	solution	
that	meets	these	performance	and	freshness	requirements	at	the	same	time.
In	 this	 chapter,	 we	 present	 a	 new	 approach	 to	 online	 decision	 support	 systems	
that	is	capable	of	analysing	up-to-date	data.	It	is	based	on	a	database	cluster:	this	
is	a	cluster	of	commercial	off-the-shelf	computers	as	hardware	infrastructure	and	
off-the-shelf	database	management	systems	as	transactional	storage	managers.	A	
coordination	middleware	on	top	hides	the	details	and	provides	a	uniform,	general-
purpose	query	interface.	The	result	is	a	“database	of	databases”	following	the	vi-
sion	of	a	hyperdatabase	(Schek,	Böhm,	Grabs,	Röhm,	Schuldt,	&	Weber,	2000).	An	
important	design	principle	of	a	database	cluster	is	its	component-oriented	nature.	
In	particular,	we	want	to	be	able	to	easily	plug	together	and	to	expand	the	cluster	
using	standard	hardware	and	software	components	only.	This	results	in	a	highly	
scalable	system	architecture.
We	concentrate	on	central	architectural	issues	and	performance	aspects	of	database	
clusters	for	usage	in	a	decision	support	scenario.	The	objective	is	to	develop	a	basic	
infrastructure	for	interactive	decision	support	systems	that	are	capable	of	analysing	
up-to-date	data	and	that	can	give	guarantees	on	how	outdated	data	accessed	might	
be.	To	be	able	to	do	so,	we	need	different	versions	of	data	in	the	cluster,	which	we	
achieve	by	replicating	data	throughout	the	cluster.	Replication	also	helps	to	avoid	
expensive	distributed	joins	over	huge	amounts	of	data;	as	always	several	nodes	can	

2�2 Röhm

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

evaluate	an	OLAP	query.	We	will	discuss	query	routing	strategies	for	an	optimal	
workload	distribution	of	long	running	and	I/O	intensive	OLAP	queries	over	encap-
sulated	standard	components	of	a	database	cluster.
Furthermore,	we	explicitly	allow	that	not	all	cluster	nodes	are	up-to-date	all	the	
time. This is reflected by the notion of freshness of data, which is a measure for
the	deviation	of	a	certain	component	as	compared	to	an	up-to-date	component.	We	
present	an	innovative	approach	to	replication	management,	called	freshness-aware	
scheduling	(FAS).	The	intention	of	freshness-aware	scheduling	is	to	trade	query	
performance	for	freshness	of	data.	Consequently,	FAS	introduces	a	new	quality-of-
service	parameter	that	allows	queries	to	specify	an	explicit	freshness	limit	for	the	
data	accessed.	If	some	queries	agree	to	be	evaluated	on	older	data,	update	propa-
gation can be interleaved with query processing more efficiently. This results in an
overall	better	system	performance	and	only	a	minimal	slowdown	of	both	queries	
and	updates.	In	particular,	it	enables	clients	to	request	and	access	up-to-date	data.
The	remainder	of	this	chapter	is	organised	as	follows:	In	the	next	two	sections,	we	
will first present a scalable infrastructure for an unified OLTP/OLAP database cluster
and	discuss	physical	data	design	alternatives	for	cluster-based	online	decision	support	
systems.	The	subsequent	two	sections	introduce	query	routing	and	freshness-aware	
scheduling,	and	also	discuss	related	work.	Both	techniques	have	been	prototypically	
implemented	as	part	of	the	PowerDB	project	at	ETH	Zurich	and	in	the	Evaluation	
section,	we	report	on	the	results	of	a	comprehensive	performance	evaluation	with	
our	prototype	system.	The	last	section	concludes	the	chapter.	

Towards an Unified Architecture for
OLTP.and.OLAP

The	overall	goal	is	to	achieve	high	scalability	and	performance	for	OLAP	queries	
and	to	allow	OLAP	clients	to	access	up-to-date	data	if	they	ask	for	it.	In	order	to	
achieve	this,	we	drop	the	strict	distinction	between	operational	databases	and	data	
warehouses.	Instead	of	separating	OLTP	and	OLAP	workloads	in	space,	we	propose	
to	deploy	a	middleware-based	database	cluster	for	both	workloads	simultaneously	
as illustrated in Figure 1. The ratio behind this unified architecture is to combine
the	scalability	and	performance	of	parallel	database	clusters	with	quality	of	service	
guarantees	possible	through	a	coordination	middleware.	
Database	clusters	are	comprised	of	a	cluster	of	commodity	computers	as	hardware	
infrastructure	and	off-the-shelf	database	management	systems	as	a	 transactional	
storage	layer.	Such	a	database	cluster	is	an	attractive	platform	for	both	OLTP	and	
OLAP	with	regard	to	performance,	scalability,	fault	tolerance,	and	cost/performance	
ratio.	Several	transactions	can	run	in	parallel	on	several	nodes.	When	the	workload	

OLAP with a Database Cluster 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

or	the	amount	of	data	increases,	one	can	“scale	out”	the	cluster	by	simply	adding	
new	components	(Gray,	1999).	Finally,	fault	tolerance	can	be	achieved	using	rep-
lication	of	either	hardware	or	data.	However,	the	challenge	with	a	database	cluster	
is	to	build	it	in	a	way	that	all	these	properties	are	present	at	the	same	time.	To	be	
able	to	give	clients	guarantees	on	both	the	consistency	and	the	freshness	of	the	data	
accessed,	we	need	some	sort	of	coordination	between	the	OLTP	and	OLAP.
For	this	reason,	we	introduce	a	coordination	middleware	on	top	of	the	cluster	that	
has	complete	knowledge	about	the	system	state.	In	particular,	both	OLTP	and	OLAP	
requests	are	passing	through	this	coordination	middleware:	updates	are	executed	
immediately	on	one	or	more	designated	OLTP	nodes	and	their	effect	is	logged,	while	
queries	are	routed	to	one	of	the	OLAP	nodes.	The	system	can	route	queries	to	only	
one	OLAP	node	because	we	assume	that	each	cluster	node	holds	its	own	copy	of	
the	database.	Hence,	we	are	able	to	execute	several	OLAP	requests	in	parallel	on	
different	nodes	without	any	internode	communication	or	expensive	distributed	joins.	
The	coordinator	further	allows	those	copies	to	have	different	freshness,	that	is,	to	
represent	different	database	snapshots.	It	uses	those	different	database	versions	to	
serve	OLAP	clients	faster	that	agree	to	access	older	database	snapshots.

Example.1:	OLAP	with	a	Database	Cluster.	All	client	requests,	that	is	
both	OLTP	and	OLAP	workloads,	are	passing	the	coordination	middle-
ware.	OLTP	transactions	are	immediately	forwarded	to	the	OLTP	nodes,	
and	the	effects	and	timestamps	of	successful	updates	are	logged.	OLAP	
queries	are	routed	to	one	of	 the	OLAP	nodes	depending	on	their	data	
freshness	requirements.	The	lower	their	requirements	are,	the	higher	is	
the probability that the coordinator finds a suitable OLAP node that (a)
is	fresh	enough	and	(b)	is	free	to	execute	another	query.	If	such	a	node	
exists,	the	query	will	be	immediately	routed	there	and	start	executing.	

Figure 1. Unified OLTP/OLAP cluster architecture

Clients

Coordination

Middleware

Database

Cluster

2�4 Röhm

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Otherwise, the query has to wait while the coordinator first updates an
OLAP	node	with	previously	logged	updates	to	meet	the	reader’s	fresh-
ness	requirements,	before	it	can	route	the	query	there.			

There	are	a	number	of	problems	to	solve	with	such	a	setting,	for	example,	which	
nodes	to	choose	to	evaluate	an	incoming	OLAP	query.	But	the	central	question	is	
how to efficiently propagate updates into the cluster without sacrificing correct-
ness	or	scalability.	One	solution	is	freshness-aware	scheduling,	which	allows	one	
to	seamlessly	trade	freshness	of	data	for	query	performance.	

System.Architecture

In	the	following,	we	give	a	more	in-depth	discussion	of	the	system	architecture	as	
developed	in	the	PowerDB	project	at	ETH	Zurich	(Röhm,	2002;	Schek	et	al.,	2000).	
A	database	cluster	consists	of	commodity	PCs,	each	running	an	off-the-shelf	com-
mercial	database	system	(DBMS)	as	a	transactional	storage	layer.	For	the	sake	of	
simplicity	let	us	assume	that	all	cluster	nodes	are	homogeneous,	that	is,	they	run	
the	same	DBMS	with	the	same	database	schema.	Each	node	holds	a	full	copy	of	the	
database.	We	also	refer	to	a	database	at	the	cluster	nodes	as	a	component	DBMS.	We	
distinguish	between	one	or	more	dedicated	master	nodes	and	n	secondary	nodes.
There	is	a	coordination	middleware	(also	referred	to	as	coordinator)	that	administers	
the	cluster.	It	is	responsible	for	scheduling,	routing,	and	logging	of	the	incoming	
requests.	Except	for	this	purpose-built	coordinator,	the	cluster	consists	of	off-the-
shelf	hardware	and	software	components.	The	coordination	middleware	comprises	
an	input	queue,	a	scheduler	with	an	input	queue,	a	router,	a	refresher,	and	a	logger	
(cf.	Figure	2).

Figure 2. System architecture details (Röhm, 2002)

updates query query query

InputQueue

master node node � node 2 node n

State
InfoRefresher Scheduler

Router
Logger

CDBMS0
CDBMS� CDBMS�

CDBMSn

EOT
log entry

Coordination Middleware

db db db dbrefresh
log

Cluster of Databases

global
log

OLAP with a Database Cluster 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Clients	submit	read-only	and	update	transactions	to	the	middleware.	The	middleware	
schedules	and	routes	updates	and	queries	to	cluster	nodes.	The	scheduler	generates	a	
correct	interleaved	execution	order.	The	master	nodes	serve	as	primary	nodes	where	
all updates will first be executed. In the following discussion, we consider only a
single	master	node.	However,	the	master	node	could	actually	be	clustered	itself.	Its	
internal	organisation	is	not	of	interest	to	the	coordinator.	It	only	needs	to	know	the	
serialisation	order	and	maintains	a	high-level	log.
Queries arrive at an input queue. The input queue is not processed in a “first-in-first-
out”	manner.	Instead,	the	scheduler	decides	in	which	order	to	process	the	incoming	
requests	(a	waiting	time	limit	avoids	starvation).	In	general,	there	can	be	several	
secondary	nodes	where	a	query	of	a	read	transaction	may	execute.	The	router	chooses	
one	of	these	nodes	for	each	query.	To	do	so,	the	coordination	middleware	maintains	
some	global	system	state	information,	for	example,	the	version	of	each	node.	

Transaction.Model

With	 regard	 to	 transactions	 submitted	by	clients,	 that	 is,	 client	 transactions,	we	
distinguish	 between	 read-only	 (OLAP)	 transactions	 and	 update	 transactions.	A	
read-only	transaction	only	consists	of	queries.	An	update	transaction	comprises	at	
least	one	insert,	delete,	or	update	statement—shortly	referred	to	as	updates—next	
to	arbitrarily	many	further	SQL	statements.	In	case	of	a	read-only	transaction,	the	
client specifies an explicit freshness limit for the data accessed. Furthermore, de-
coupled	refresh	transactions	propagate	updates	through	the	cluster.
Transaction	management	by	the	coordination	middleware	guarantees	global	correct-
ness and consistency. We deploy a simplified two-layered open-nested transaction
model	(Weikum	&	Schek,	1992):	The	queries	of	read-only	transactions	as	submitted	
by	clients	are	executed	and	committed	as	separate	subtransactions	in	the	compo-
nent	DBMSs.	The	coordination	middleware	also	contains	a	global	logger.	It	keeps	
track	of	the	update	subtransactions	on	the	master	node	and	their	decoupled	refresh	
subtransactions	on	the	secondary	nodes.	The	latter	are	controlled	by	the	refresher.	
This	allows	being	globally	correct	without	distributed	commit	processing	as	with,	
for	example,	two-phase-commit	(2PC).	Avoiding	distributed	commit	processing	is	
especially	important	for	large	clusters.

Physical.Design.Alternatives

A	fundamental	problem	for	OLAP	with	a	database	cluster	is	the	physical	organisation	
of	data	that	yields	good	performance	with	regard	to	queries	and	updates.	The	two	

2�6 Röhm

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

primitives for physical design of individual relations that are specific to distribution
are	data	partitioning	and	data	replication.	Partitioning,	that	is,	data	from	a	relation	
goes	to	different	nodes,	typically	results	in	intraquery	parallelism.	Replication	in	
turn	leads	to	interquery	parallelism,	as	different	nodes	can	evaluate	queries	in	par-
allel.	Using	these	design	primitives,	we	have	the	following	basic	alternatives	for	
physical	design	in	a	database	cluster:
	
•	 Data.partitioning: The	most	common	form	of	data	partitioning	in	a	parallel	

database	environment	is	horizontal	partitioning.	With	horizontal	partitioning,	
the	tuples	of	a	relation	are	divided	(or	declustered)	among	many	or	all	nodes	
of	the	cluster	such	that	each	tuple	resides	on	only	one	node.	There	are	several	
partitioning	strategies	possible	in	order	to	decide	which	tuple	is	stored	at	what	
node:	round	robin	partitioning,	hash	partitioning,	and	range	partitioning.	Round	
robin	partitioning	is	the	only	partitioning	strategy,	which	is	not	based	on	the	
actual	values	of	the	data.	Instead,	assuming	a	cluster	consisting	of	n	nodes,	the	
ith	tuple	is	simply	stored	on	the	(i	mod	n)-th	node.	In	contrast,	with	the	other	
partitioning	strategies	one	or	more	attributes	from	the	given	relational	schema	
are	designated	as	partitioning	attributes.	Hash	partitioning	hashes	each	tuple	on	
the	partitioning	attributes	using	a	hash	function	on	the	range	[1,	.	.	.	,	n].	Range	
partitioning	assigns	value	ranges	of	the	partitioning	attributes	to	certain	cluster	
nodes. For efficiently evaluating queries that access or scan whole relations,
round	robin	partitioning	is	best	suited.	However,	if	only	a	subset	of	a	relation	
is	accessed,	hash	or	range	partitioning	are	better	than	round	robin	partitioning	
because	they	allow	accessing	only	the	data	needed	(assuming	that	the	tuples	
are	partitioned	on	the	same	attributes	used	in	the	selection	condition).

•	 Data.replication:.The	other	basic	alternative	is	full	replication,	that	is,	each	
cluster	node	holds	a	copy	of	the	whole	database.	Queries	are	served	by	a	single	
cluster	node;	several	queries	can	be	evaluated	in	parallel	on	different	nodes.	A	
big	advantage	is	that	even	for	complex	multijoin	queries,	no	communication	
or	data	shipping	between	cluster	nodes	is	needed;	this	might	not	be	an	issue	
with	OLTP,	but	it	is	a	massive	problem	with	OLAP	workloads	(Röhm,	2000).	
However,	full	data	replication	limits	the	scalability	with	large	datasets,	as	the	
whole	dataset	is	stored	several	times.	In	spite	of	the	capacity	and	the	low	costs	
of	today’s	hard	disks,	this	might	not	be	a	problem	storagewise;	but	it	provides	
no	speedup	for	larger	datasets,	but	rather	for	higher	workloads,	and	it	induces	
high	maintenance	costs	(updates	have	to	be	executed	on	several	copies	instead	
of	just	once).

•	 Hybrid designs: Warehouse	schemata	are	often	of	a	regular	form	with	a	cen-
tral	fact	table,	which	is	connected	to	several	dimension	tables	by	foreign	key	
relationships. Such a schema is also referred to as star or snowflake schema
(Chaudhuri	&	Dayal,	1997).	This	observation	motivates	other	alternatives,	

OLAP with a Database Cluster 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

subsequently	called	hybrid	designs	(Akal,	Türker,	Schek,	Breitbart,	Grabs,	&	
Veen,	2005;	Baru,	Fecteau,	Goyal,	Hsiao,	Jhingran,	Padmanabhan,	Copeland,	
&	Wilson,	1995;	Röhm,	2000).	For	example,	in	Röhm	(2000),	the	fact	relation	
is	partitioned	over	all	n	nodes,	and	each	node	holds	a	copy	of	all	the	other	rela-
tions.	Previous	work	on	physical	organisation	of	individual	relations	showed	
that	partitioning	is	of	advantage	as	long	as	partitions	do	not	become	too	small	
(Metha	&	DeWitt,	1997).	In	other	words,	one	should	partition	the	largest	rela-
tion	to	obtain	the	optimal	speedup.	The	other	motivation	is	the	heuristic	that	
fact	tables	are	subject	to	frequent	updates.	With	this	hybrid	design,	each	up-
date	of	the	big	relation	goes	to	only	one	cluster	node,	as	opposed	to	n	cluster	
nodes	in	the	case	of	full	replication.	Another	hybrid	design	is	to	organise	the	
cluster	into	subclusters,	or	node	groups,	with	the	whole	database	replicated	at	
each	subcluster,	but	using	partial	data	partitioning	within	the	subcluster	(Akal	
et	al.,	2005).

•	 Discussion: Data	partitioning	is	a	very	popular	approach	to	the	physical	design	
for	parallel	databases.	It	provides	a	very	good	scalability	with	larger	datasets,	
especially	if	the	partitioning	scheme	is	free	of	data	skew,	that	is	all	partitions	
are	about	of	the	same	size,	and	if	all	subqueries	are	evaluated	locally	on	just	
one	data	partition.	Otherwise,	if	for	example	two	partitioned	relations	are	joined	
on	noncollocated	join-attributes,	large	amounts	of	data	must	be	shipped	be-
tween	the	cluster	nodes.	This	might	not	be	an	issue	in	an	OLTP	environment,	
but	given	 the	complex	OLAP	queries	 that	 typically	access	 large	parts	of	a	
database	it	is	important	to	avoid	any	kind	of	noncollocated	join	processing.	

The	main	advantage	of	 replication	over	partitioning	 is	 that	no	distributed	query	
processing	is	necessary	at	all.	Instead	of	intraquery	parallelism,	it	optimises	inter-
query	parallelism	in	that	different	queries	can	be	evaluated	in	parallel	and	without	
interference	on	separate	cluster	nodes.	The	disadvantages	of	 full	 replication	are	
the	limited	scalability	with	the	data	size	and	the	maintenance	costs.	Updates	must	
be	propagated	to	all	replicas	in	the	cluster,	which	gives	rise	to	a	number	of	prob-
lems	with	regard	to	correctness,	update	performance,	and	scalability.	Hence,	this	is	
typically	taken	as	“rule-out”	argument	for	replication.	We	will	discuss	a	possible	
solution	to	this	update	propagation	problem	in	a	later	section	of	this	chapter.	The	
central	idea	is	to	allow	and	consciously	make	use	of	multiple	(consistent)	versions	
of	the	database	at	different	cluster	nodes.	
The	rationale	behind	hybrid	designs	is	to	combine	the	advantages	of	both	data	par-
titioning	and	data	replication.	Consider	for	example	the	approach	to	partition	only	
the	fact	table	while	replicating	the	dimension	tables	(Röhm,	2000).	With	regard	to	
query	evaluation,	there	is	a	distinction	between	queries	that	refer	to	the	partitioned	
relation and those that do not. In the first case, all cluster nodes process the original
query,	and	the	coordination	middleware	computes	the	overall	result.	If	the	query	

2�8 Röhm

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

does	not	contain	aggregation,	the	overall	result	is	simply	the	disjoint	union	of	the	
intermediate results; computing the overall result in the other case is not difficult
either.	If	the	query	does	not	refer	to	the	partitioned	relation,	their	evaluation	is	as	
with	full	replication.
While	literature	has	proposed	other	schemes	for	physical	organisation	of	databases	
as	a	whole,	for	example,	collocated	joins	(Baru	et	al.,	1995)	or	multiattribute	declus-
tering	(Ghandeharizadeh,	DeWitt,	&	Qureshi,	1992),	one	can	see	such	techniques	
as refinements of the basic alternatives described previously. There are a variety of
further	physical	design	alternatives	available	for	OLAP,	for	example,	materialised	
views	(Gupta	&	Mumick,	1995)	or	data	cubes.	However,	such	can	be	seen	some-
what	orthogonal	to	this	discussion.	The	fundamental	problems	addressed	here	do	
not	change.	Of	course,	combining	these	techniques	is	natural	and	will	lead	to	even	
better	performance.	But	the	general	statements	about	the	developed	scheduling	and	
routing	techniques	would	not	essentially	differ.	
Finally,	researchers	have	proposed	data	compression	schemes	and	approximative	
query-evaluation	techniques	(e.g.,	Chakrabarti,	Garofalakis,	Rastogi,	&	Shim,	2000),	
including	techniques	that	allow	to	trade	result	quality	for	query-answering	time.	
It	should	be	noted	that	they	are	also	orthogonal	to	our	current	concern,	although	
they	complement	each	other	very	well:	different	cluster	nodes	could	hold	differ-
ent	compressed	versions	of	the	database.	The	coordination	middleware	could	then	
take	into	account	that	more	sophisticated	compression	schemes	typically	induce	
higher	maintenance	costs.	However,	those	combinations	are	beyond	the	scope	of	
this	chapter.	So	in	the	following	we	assume	the	physical	design	on	all	cluster	nodes	
to	be	identical.	

Query.Routing

For	the	following	section,	we	concentrate	on	a	query-only	environment,	and	to	sup-
port	the	join-intensive	OLAP	queries,	we	assume	full	replication	as	physical	design	
in	a	cluster	of	databases.	As	a	consequence,	there	is	no	need	for	distributed	query	
processing	but	instead	each	node	of	the	cluster	is	capable	of	evaluating	any	OLAP	
query	stand-alone	and	in	parallel	to	other	nodes.	The	decision	on	which	node	to	
actually	use	for	query	evaluation	is	called	query	routing.
The	objectives	of	query	routing	are	to	balance	the	load	of	the	cluster	nodes	and	to	
reduce	query	response	times.	Effective	query	routing	requires	some	knowledge	about	
the	current	state	of	the	cluster.	In	particular,	this	comprises	the	available	nodes	and	
the	number	of	currently	active	transactions	at	each	node.	In	the	following,	we	refer	
to	the	latter	as	the	load	of	a	node,	also	known	as	current	degree	of	multiprogram-
ming	(Weikum	&	Vossen,	2001).	

OLAP with a Database Cluster 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

A	middleware-based	approach	has	the	advantage	that	global	knowledge	about	the	
current	system	state	can	also	be	easily	maintained	if	all	clients	issue	their	queries	
to	the	coordination	middleware	of	the	database	cluster.	In	such	a	middleware-based	
architecture,	query	routing	is	actually	twofold.	Clients	place	their	queries	into	the	
input	queue	of	the	cluster	coordinator.	In	our	terminology	now,	routing	of	a	(single)	
query	 is	 the	decision	on	which	node	of	 the	cluster	shall	execute	a	query.	Given	
this, routing of a set of queries consists of two steps: first, the scheduler decides in
which	order	to	route	the	queries	in	the	input	queue.	Second,	it	routes	the	individual	
queries	in	this	order.	

Classification of Query Routing Strategies

We	can	classify	query	routing	strategies	alongside	the	following	two	dimensions:

•	 Query-dependence:.As first classification, we can distinguish whether routing
strategies	make	the	routing	decision	query-dependent	or	-independent.	Many	
conventional	routing	approaches	are	query-independent,	which	means	that	the	
query to be routed does not influence the routing decision. In contrast, more
sophisticated	approaches	base	the	routing	decision	on	the	current	query	to	be	
routed.	

•	 Previous.knowledge:.Routing	strategies	can	be	further	distinguished	with	
regard to flexibility whether the routing decision is done dynamically at run-
time or based on precomputed data. Standard affinity-based routing is a good
example for a routing algorithm using precomputed affinity data. In contrast,
cache	approximation	routing	uses	a	completely	dynamic	approach.

In	the	following,	we	give	an	overview	of	existing	query	routing	strategies	and	relate	
them to the presented classification scheme.

Conventional.Routing.Strategies

Traditionally,	routing	algorithms	are	published	under	the	term	transaction	routing	
that	can	be	considered	equivalent	to	query	routing	as	typically	only	read	transac-
tions	are	considered.	Conventional,	query-independent	routing	algorithms	always	
route	a	set	of	queries	in	the	same	order	as	they	arrive	at	the	system.	In	other	words,	
they process the input queue according to a first-come-first-served policy. A typi-
cal	example	is	the	FCFFS	(“First-Come-First-Free-Server”)	strategy	that	assumes	
a multiprogramming level of one and routes each query to the first free server in a
round-robin	fashion.

240 Röhm

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Carey,	Livny,	and	Lu	(1985)	and	Carey	and	Lu	(1986)	addressed	the	problem	of	
dynamically	assigning	queries	to	sites	in	a	distributed	(shared-nothing)	database	
system	with	full	replication.	They	presented	two	query-dependent	algorithms	that	
are based on a classification of queries according to their I/O and CPU demands:
BNQRD	(“Balance	the	Number	of	Queries	by	Resource	Demands”)	routes	queries	
to	the	site	with	the	smallest	number	of	queries	of	the	same	type	(i.e.,	I/O-bound	or	
CPU-bound),	while	LERT	(“Least	Estimated	Response	Time”)	uses	the	I/O	and	
CPU	demand	information	to	route	a	query	to	the	site	with	the	least	estimated	re-
sponse	time.	In	a	simulation	study,	BNQRD	improved	waiting	times	of	queries	by	
around	10%	compared	to	a	simple	balancing	strategy	(BNQ—“Balance	the	Number	
of	Queries”),	while	the	LERT	algorithm	performed	only	a	bit	better	than	BNQRD	
in	most	cases.	
Thomasian (1987) refined this approach. Queries are classified not only into CPU-
or I/O-bound, but into a finite set of query types based on all their service demands
(i.e.,	CPU,	memory,	different	disks).	Three	routing	algorithms	have	been	compared	
in	a	simulation	study.	The	results	again	showed	that	query-dependent	routing	based	
on query classification significantly improves the system performance. The article
also	concludes	that	an	accurate	response	time	prediction	algorithm	is	quite	complex	
and that the mapping of incoming queries into a fixed set of query types remains
difficult to find and to achieve.

Affinity-Based Transaction.Routing

The idea behind affinity-based routing is to assign queries that access the same data
to	the	same	component.	These	are	typically	query-dependent	strategies.	For	example,	
Yu, Cornell, Dias, and Iyer (1987) presented an affinity-based approach to transaction
routing that classified incoming transactions into affinity groups based on previous
knowledge	of	the	database	call	reference	pattern.	The	reference	pattern	is	retrieved	
from	trace	information	of	the	transaction	workload.	The	proposed	routing	scheme	
assigns a fixed destination system to each affinity group. In simulation study, the
authors showed that affinity-based routing significantly reduced lock-contention and
buffer	I/O,	and	therefore	clearly	improved	the	response	times	of	transactions.	
An	overview	and	framework	for	workload	allocation	in	distributed	database	sys-
tems is presented in Rahm (1992). Approaches to affinity-based transaction routing
typically	concentrate	on	OLTP-like	transactions.	In	particular,	they	only	consider	
the data accessed by the queries to decide whether there is affinity between two
given	queries.	The	nature	of	the	access	is	not	taken	into	account,	that	is,	“scan”	vs.	
“random	access.”	A	strong	disadvantage	is	that	such	approaches	rely	on	precom-
puted	data	from	low-level	trace	information	of	previous	runs	of	the	workload.	This	
neglects	the	component-oriented	nature	of	a	database	cluster.

OLAP with a Database Cluster 24�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Cache.Approximation.Query.Routing

The	objective	of	query	routing	 is	 to	reduce	query	response	 time.	The	execution	
times	of	queries—especially	OLAP	queries—are	dominated	by	I/O	costs.	While	
caching	plays	a	major	role	for	performance	of	query	evaluation,	all	previous	men-
tioned	routing	algorithms	do	not	take	caching	effects	into	consideration	at	all.	In	
contrast, cache approximation routing estimates the benefit of a cache state for a
query.	The	idea	is	that	the	execution	time	of	a	query	is	minimal	at	the	cluster	node	
whose	cache	contains	the	largest	subset	of	data	that	will	be	accessed	by	the	query	
(Röhm,	Böhm,	&	Schek,	2001).	
This also means that the scheduler no longer processes its input queue in a first-
come-first-served manner. Instead, the scheduler reorders the queries in the input
queue according to the estimated benefit values. The query for which the routing
algorithm estimates the highest benefit is executed first. However, the scheduler
has	to	ensure	that	all	queries	are	still	processed.	That	is,	it	must	avoid	starvation	
of queries with low benefit values. One approach is to tag queries with an age and
reorder the input queue according to both benefit and age of the queries. Another
one	is	to	introduce	a	wait	time	threshold	and	to	preferably	route	queries	whose	wait	
time	exceeds	this	threshold.
A	straightforward	approach	to	approximate	the	set	of	tuples	accessed	by	a	query	
is	 to	keep	 track	of	 the	 relations	accessed.	This	 is	 simply	achieved	by	analysing	
the	FROM	clause	of	the	query.	Such	a	“Cache	Approximation	by	FROM	Clause”	
(CAF)	approximates	the	state	of	component	caches	by	the	set	of	relations	accessed	
by the most recent n queries, and defines the benefit of the cache state of cluster
node	C	for	query	Q	by	the	size	of	the	intersection	of	the	cache	state	and	the	FROM	
clause	of	the	query.

Example.2:	Cache	Approximation	Routing.	Assume	a	small	cluster	of	
two	nodes,	N1	and	N2,	with	the	approximated	cache	states	CacheStateN1	
=	{Region,Customer,LineItem}	and	CacheStateN2	=	{Orders,LineItem,S
uppliers}.	Now	the	following	query	Qx	has	to	be	routed:

S E L E C T c o u n t (*) F R O M O r d e r s , L i n e I t e m W H E R E . . .	 	

It	accesses	the	two	relations	Orders	and	LineItem.	The	intersection	with	
the	approximated	cache	state	of	node	N1	is{LineItem},	which	is	a	caching	
benefit of 1; the intersection with the cache state of node N2 is {Orders,
LineItem}, corresponding to a caching benefit of 2. Hence, CAF would
route	query	Qx	to	node	N2,	because	it	expects	there	a	higher	caching	
benefit.

242 Röhm

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

This	approach	relies	on	a	very	rough	approximation	of	queried	data.	It	does	not	take	
into	account	which	portions	of	the	relations	are	actually	accessed	by	a	query.	These	
portions	are	described	by	each	query	predicate.	However,	quantifying	 the	exact	
overlap of the sets of tuples specified by two different predicates having common
attributes is difficult. In Röhm et al. (2001), an interesting refinement based on bit
strings	has	been	proposed.	The	authors	proposed	to	further	approximate	the	set	of	
tuples specified by a predicate using bit string signatures. By doing so, one can reduce
the calculation of benefits to bit string comparisons. This can be done efficiently.

Freshness-Aware.Scheduling

The	previous	considerations	have	concentrated	on	a	query-dominant	environment.	
We	have	seen	that	replication	is	a	key	factor	for	query	performance	and	how	query	
routing	can	optimise	its	utilisation,	for	example,	by	approximating	the	state	of	the	
caches of the cluster nodes. Until now, we have left aside the problem field of up-
dating	our	dataset.	This	might	be	state-of-the-art	for	data	intensive	applications	like	
OLAP	to	strictly	distinguish	between	query	and	update	phases.	However,	a	data	
warehouse	offering	data,	which	is	a	week	old,	will	not	be	acceptable	much	longer.	
Rather,	 the	 intention	should	be	 to	be	able	 to	 run	queries	over	up-to-date	data	 if	
needed.	And	actually,	a	cluster-based	approach	to	OLAP	can	provide	this.
The	simultaneous	admission	of	queries	and	updates	in	the	presence	of	replication	
necessitates	a	transaction	management	and	replication	control	component.	Trans-
action	management	is	responsible	for	a	correct	interleaved	execution	of	concurrent	
queries	and	updates,	while	replication	management	assures	that	updates	eventually	
affect	all	copies	of	the	data.	

Replication.and.Correctness

A	naïve	approach	to	global	correctness	would	use	synchronous	replication	where	
each	update	immediately	goes	to	all	replicas,	also	referred	to	as	eager	replication.	
However,	such	approaches	necessitate	a	distributed	atomic	commit	protocol,	which	
is	not	feasible	for	large	number	of	nodes	(Gray,	Helland,	O’Neil,	&	Shasha,	1996).	
This	means	that	in	a	cluster	environment,	one	has	to	propagate	updates	asynchro-
nously	without	two-phase	commit	protocol.	
An	interesting	approach	is	using	group	communication	primitives	(Kemme,	2000;	
Wu	&	Kemme,	2005):	a	client	submits	its	update	to	one	database	server	which	then	
broadcasts	the	update	to	all	other	cluster	nodes	using	an	atomic	broadcast	protocol.	
The	use	of	appropriate	network	primitives	makes	a	concluding	two	phase	commit	

OLAP with a Database Cluster 24�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

unnecessary,	because	those	protocols	guarantee	the	ordered	delivery	of	the	mes-
sages	so	that	the	global	serialisation	order	can	be	determined	locally	by	each	node.	
However, group communication protocols must determine this global order first,
and	hence	add	a	relatively	high	overhead.	Approaches	such	as	by	Wu	and	Kemme	
(2005)	 furthermore	 require	 direct	 support	 by	 the	database	management	 system,	
which	violates	the	component-oriented	nature	of	a	cluster	of	databases.	
There	are	a	variety	of	approaches	to	asynchronous	replication.	Most	restrict	trans-
actions	 to	access	only	a	single	node	 in	order	 to	be	able	 to	ensure	serialisability	
for certain restricted cluster configurations (e.g., Breitbart, Komondoor, Rastogi,
Seshadri,	&	Silberschatz,	1999).	The	latter	alternative	has	also	no	control	over	the	
emerging	serialisation	order.	It	can	only	guarantee	that	the	transactions	of	a	client	
are	serialised	correctly	between	all	other	transactions,	but	not	precisely	in	which	
order. However, if we do not want to sacrifice correctness—that is the system shall
guarantee	one-copy	serialisability—this	is	not	enough.
Hence,	let	us	in	the	following	look	at	an	alternative	approach	to	cluster	replica-
tion	control	that	combines	the	correctness	and	up-to-date	guarantees	of	distributed	
transactions	with	the	performance	of	asynchronous	update	propagation.	It	is	using	
a	primary-copy	replication	scheme	with	deferred	refreshment:	The	coordination	
middleware executes updates first on the OLTP nodes (the number of update trans-
actions	 that	run	 in	parallel	on	 the	OLTP	node	is	not	restricted).	After	an	update	
transaction finishes, as soon as a refresh is activated, the refresher propagates the
changes	to	the	remaining	replicas	using	decoupled	refresh	transactions.	
In	more	detail,	each	of	them	refreshes	one	node	and	is	activated	separately.	Each	
node	 guarantees	 locally	 sterilisable	 executions.	 In	 addition,	 we	 have	 to	 ensure	
read	consistency:	this	means	to	propagate	refresh	transactions	in	a	way	that	query-
only	transactions	always	see	the	same	version	during	their	lifetime.	This	has	to	be	
handled	with	care	because	as	we	discussed	in	the	previous	section,	the	router	can	
send	each	query	of	a	read-only	transaction	to	a	different	OLAP	node—routing	of	
queries of the same transaction to different cluster nodes is beneficial because of
caching	effects.	
Next	to	guaranteeing	serialisability,	OLAP	systems	aim	foremost	at	improving	query	
response	time.	The	idea	is	to	introduce	freshness	of	data	as	a	new	quality-of-service	
parameter	for	transaction	processing.	This	should	allow	for	explicitly	trading	fresh-
ness	of	data	accessed	for	query	performance.	OLAP	clients	specify	a	lower	bound	
of	freshness	for	the	data	accessed	by	queries	of	the	current	transaction	t,	denoted	
by	ft.	The	freshness	limit	is	an	additional	constraint	for	query	routing.	
In	the	following,	we	introduce	a	freshness-of-data-driven	approach	to	replication	
management	in	a	database	cluster:	Freshness-aware	scheduling	(FAS).	FAS	com-
prises	replication	management	and	mechanisms	of	multiversion	concurrency	control.	
The	notion	of	freshness	of	data	is	crucial	in	the	context	of	FAS.	We	will	presently	
discuss	freshness	metrics,	before	introducing	FAS	in	more	detail.	

244 Röhm

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Freshness.of.Data

Freshness	measures	are	closely	related	to	the	notion	of	coherency	for	which	several	
ideas	have	been	proposed	in	the	literature	(e.g.,	Alonso,	Blott,	Feßler,	&	Schek,	
1997;	Pacitti	&	Simon,	2000).	Recently,	those	concepts	have	been	revived	under	
the	terms	freshness	of	data	(Röhm,	Böhm,	Schek,	&	Schuldt,	2002)	or	currency	
(Guo,	Larson,	Ramakrishnan,	&	Goldstein,	2004).	With	those	approaches,	a	so-
called	freshness	index	f(d)	∈	[0,	...,	1]	measures	the	freshness	of	some	data	d.	This	
freshness index reflects how much the data has deviated from the up-to-date ver-
sion.	Intuitively,	a	freshness	index	of	1	means	the	data	is	up-to-date,	while	an	index	
of 0 would characterise the data as “infinitely” outdated. One can distinguish three
basic approaches to define the freshness index: delay freshness, version freshness,
and	data	deviation.	

•	 Delay.freshness: A delay freshness index reflects how late a certain cluster
node	is	as	compared	to	the	up-to-date	OLTP	node	(Guo	et	al.,	2004;	Röhm	et	
al.,	2002).	It	is	based	on	the	period	of	time	between	the	last	propagated	up-
date and the most recent update on the up-to-date node. Let τ (c) denote the
commit time of the last refresh subtransaction on an OLAP node c, and τ (c0)	
the	commit	time	of	the	most	recent	update	subtransaction	on	the	OLTP	node.	
Then the delay freshness index is defined as f (c) = τ (c) / τ (c0).	This	implies	
that	f	∈	[0,	1].

•	 Version.freshness: Alternatively, one can base the freshness definition on the
version	difference	between	a	cluster	node	and	the	up-to-date	node	c0. We define
the	version	of	a	cluster	node	c	as	the	number	of	committed	update	transactions,	
denoted	by	v(c).	Following	Pacitti	and	Simon	(2000),	the	version	freshness	
index is then defined as f(c) = v(c) / v(c0)	;	f	∈	[0,	1].	Note	that	a	version	can	
actually	be	seen	as	a	kind	of	logical	time.

•	 Freshness index by data deviation:	For	the	sake	of	completeness,	we	also	
want to mention a definition of the freshness index based on data deviation
(also	known	as	arithmetic	or	numerical	coherency	condition)	(Gallersdörfer	&	
Nicola, 1995). However, such a freshness index definition is only meaningful
for	single	numerical	data	items.	Let	d(x,c)	denote	the	data	value	of	the	replica	
x stored at some node c. Then the data deviation freshness index is defined as
f(x,c) := 1 - | (d(x,c) − d(x, c0))	/	d(x,	c0)|.

For	a	middleware-based	architecture	pursuing	a	component-oriented	approach,	only	
the two first mentioned freshness indexes are feasible. The reason is that the coor-
dinator	follows	a	“black-box”	principle	when	managing	the	cluster	nodes,	which	
means	that	it	does	not	have	direct	access	to	the	content	of	the	nodes.	Hence,	it	can-

OLAP with a Database Cluster 24�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

not base its freshness definition on concrete data values. Delay freshness offers the
most	intuitive	and	workload-independent	way	of	specifying	the	freshness	needs	of	
a	client	(“at	most	10	minutes	old”	instead	of	“at	most	1000	updates	behind”).	Hence	
we	will	assume	delay	freshness	in	the	following	discussion.

Overview.of.FAS

The	basic	mechanisms	for	ensuring	serialisability	and	read	consistency	are	as	fol-
lows:	FAS	uses	the	primary-copy	replication	scheme	with	deferred	refreshment	as	
discussed before and executes updates first on the OLTP node. After an update sub-
transaction finishes, as soon as a refresh is activated, FAS propagates the changes
to	the	remaining	replicas	using	decoupled	refresh	subtransactions.	
In	more	detail,	some	variant	of	multiversion	concurrency	control	(MVCC)	is	used.	
Freshness-aware	scheduling	does	not	provide	just	any	version	to	a	client	but	a	ver-
sion	which	meets	the	given	freshness	limit.	In	other	words,	only	cluster	nodes	with	
freshness	above	the	given	lower	bound	will	be	considered	during	query	routing.	
Consequently, the higher the specified minimum freshness is, the smaller is the por-
tion	of	the	cluster	to	which	the	corresponding	query	may	be	routed.	In	the	worst	case,	
no	node	is	available	with	the	requested	degree	of	freshness,	and	the	coordination	
middleware must activate update propagation first. Hence, although FAS follows
a	lazy	primary-copy	replication	approach	with	deferred	updates,	it	nevertheless	al-
lows	queries	to	access	the	most	recent	data.	

Example.3: Freshness-Aware	Scheduling.	Figure	3	shows	three	queries	
with different freshness limits (Röhm et al., 2002). The first query asks
for data with a degree of freshness of at least 0.9. Only the first OLAP
node	has	a	freshness	index	that	meets	this	limit	and	hence	is	the	only	
possible	target	node.	In	contrast,	Query	2	is	asking	only	for	data	with	a	
freshness	of	at	least	0.5.	This	freshness	limit	is	met	by	all	cluster	nodes.	

Figure 3. Principle of freshness-aware scheduling
update� updatem

Query�

limit 0.�

Query�

limit 0.�

Query�

limit 0.��

freshness
�.0

freshness
0.��

freshness
0.8

freshness
0.�refresh

transactions
node�

node� node�
nodem

OLTP node OLAP nodes

246 Röhm

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Hence,	FAS	is	free	to	route	Query	2	to	any	of	the	OLAP	nodes.	In	Figure,	
the	last	node	is	chosen	to	serve	the	query.	Note	that	it	actually	could	have	
been	evaluated	by	any	node	of	the	cluster.	Query	2	sees	indeed	a	cluster	
of	size	n,	while	for	Query	1	only	one	node	is	usable.	 	 	
			

The	implications	to	correctness	are	that	queries	contended	with	stale	data	are	seri-
alised	before	update	transactions	which	have	already	committed	but	have	not	been	
propagated	to	the	query’s	target	node	so	far.	This	requires	that	refresh	and	read-
only	transactions	are	interleaved	correctly	on	the	various	nodes,	and	that	read-only	
transactions	access	only	one	version	of	the	data.	To	ensure	this	is	the	responsibility	
of	the	coordination	middleware	(Röhm	et	al.,	2002).	

Performance.Evaluation

Let us finally have a short look at the performance characteristics of the presented
query	routing	and	update	propagation	algorithms.	In	the	following,	we	report	on	
results	of	an	experimental	evaluation	of	a	prototype	implementation	as	part	of	the	
PowerDB	project	at	ETH	Zurich	using	the	TPC-R	benchmark	on	a	large	cluster	of	
128	nodes	(Röhm	et	al.,	2002).	We	proceed	as	follows:	First,	we	quantify	the	per-
formance	improvement	one	can	achieve	with	different	query	routing	algorithms.	
Then,	we	explore	the	overall	performance	and	scalability	of	FAS.	We	are	especially	
interested in the influence of different freshness requirements on the query and up-
date	performance	in	the	cluster.	

Evaluation.Setup

The	prototype	comprises	a	database	cluster,	one	designated	OLTP	node,	the	coor-
dinator,	and	a	client	simulator.	The	evaluation	has	been	conducted	on	a	database	
cluster	consisting	of	128	PCs	(1	GHz	Pentium	III,	256	MBytes	RAM,	and	2	SCSI	
hard	disks)	each	running	Microsoft	SQL	Server	2000	under	Windows	2000	Ad-
vanced	Server.	We	generated	 the	databases	according	 to	 the	TPC-R	benchmark	
with	a	scaling	factor	1	(size	including	indexes	about	2	GB).	The	master	node,	the	
global	 log,	and	the	client	simulator	are	Pentium	II	400	MHz	machines	with	 the	
same software configuration. The coordinator runs on a separate PC with two 1
GHz	Pentium	III	and	512	MB	RAM.	All	nodes	are	interconnected	by	a	switched	
100	MBit	Ethernet.	

OLAP with a Database Cluster 24�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Comparison.of.Query.Routing.Algorithms

First,	we	are	interested	in	the	overall	performance	of	the	different	query	routing	
strategies	as	discussed	earlier	in	this	chapter	for	different	cluster	sizes,	that	is,	their	
scalability.	Therefore,	we	measured	the	performance	of	three	different	variants	of	
a	cache	approximation	router	versus	a	conventional	router	for	cluster	sizes	up	to	
24	nodes:

•	 FCFFS:.Conventional first-come-first-free-server routing which is query in-
dependent	and	not	cache-aware.	Its	performance	serves	as	an	orientation	point	
for	the	other	strategies.	

•	 CAF:	Dynamic	cache	approximation	routing	based	on	the	FROM	clause	of	
queries.

•	 CAS:.Dynamic	cache	approximation	routing	based	on	predicate	signatures.
•	 CASweighted: Like CAS, but with a refined benefit model using normalised

benefits.

The	results	are	shown	in	Figure	4	(Röhm	et	al.,	2001).

Figure 4. Query routing performance and scalability: (a) throughput, (b) throughput
scaled to FCFFS, (c) mean response time, and (d) MRT scaled to FCFFS

	 	
..

	 	
..

	

(a)

(c)

(b)

(d)

248 Röhm

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Although	the	throughput	improves	only	by	less	than	10%	with	cache	approximation	
routing as compared to FCFFS routing, the mean response time can be significantly
shortened.	The	best	results	achieved	CAS-weighted	routing,	which	offers	almost	
20%	faster	mean	response	times	over	the	whole	cluster	size.	All	four	investigated	
routing	strategies	also	showed	a	perfectly	linear	scalability	over	the	cluster	size.	
For	example,	the	throughput	with	a	24-node	cluster	is	24	times	higher	than	on	a	
single	node.	

Performance.of.Freshness-Aware.Scheduling

In	the	following,	we	are	interested	in	the	performance	characteristics	of	FAS.	We	
have	used	a	dynamic	workload	of	ten	update	streams	concurrently	executed	with	
twice	as	many	querying	clients	as	there	are	nodes	in	the	cluster.	We	further	varied	
the	mean	freshness	requested	by	read	transactions	from	0.6	up	to	1.	The	results	are	
shown	in	Figure	5	(Röhm	et	al.,	2002).
The	presented	middleware-based	cluster	architecture	proved	 to	be	very	scalable	
and	it	also	shows	that	freshness-aware	scheduling	effectively	allows	users	to	trade	
freshness	of	data	for	faster	query	response	time.	We	see	that	the	slowdown	of	que-
ries	by	the	concurrent	update	stream	for	FAS	is	around	10%	up	to	60%	with	regard	
to	mean	response	time	as	compared	to	the	no-update	case.	If	clients	issue	queries	
with	mean	freshness	limit	0.6	(which	means	at	most	20	minutes	old),	they	obtain	
the	results	about	30%	faster,	compared	to	a	requested	freshness	of	1.	This	is	exactly	
the	effect	freshness-aware	scheduling	is	targeting	on:	trading	data	“up-to-dateness”	
for	query	performance.	The	results	also	nicely	show	that	there	is	no	slowdown	with	
increasing	cluster	size,	as	it	would	be	the	case	with	synchronous	updates:	we	were	
doubling	the	number	of	clients	and	the	cluster	size	at	the	same	time,	and	mean	re-
sponse	time	did	not	change,	but	query	throughput	doubled.	This	means	that	at	least	

Figure 5. Performance of FAS with varying freshness limits

(a) (b)

OLAP with a Database Cluster 24�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

up	to	128	nodes,	freshness-aware	scheduling	scales	linearly	with	increasing	cluster	
size.	At	the	same	time,	the	throughput	achieved	by	10	concurrent	update	streams	
remains	constant,	even	with	a	large	OLAP	cluster	of	up	to	128	nodes	(not	shown	in	
the	graphs).	Obviously,	the	coordination	middleware	can	keep	up	with	the	updaters	
and	the	increasing	OLAP	workload	(on	128	nodes,	256	query	streams	are	active)	
without	a	slowdown	for	either	queries	or	updates.	At	the	same	time,	the	CPU	load	
of	the	scheduler	with	128	nodes	was	only	30%	on	average.	In	other	words,	the	co-
ordination	middleware	is	not	becoming	a	bottleneck.

Summary

Online	analytical	processing	must	cope	with	huge	volumes	of	data	and	at	the	same	
time	allow	for	short	response	times	to	facilitate	interactive	usage—and	the	require-
ment	that	the	data	analysed	should	be	up-to-date	is	becoming	more	and	more	im-
portant.	This	chapter	has	presented	database	clusters	as	a	scalable	infrastructure	for	
interactive	decision	support	systems	that	are	capable	of	analysing	up-to-date	data.	
We	discussed	central	architectural	issues	and	performance	aspects,	such	as	several	
physical	design	alternatives,	possible	query	routing	algorithms,	and	innovative	up-
date	propagation	protocols.
Most	data	warehouses	nowadays	offer	a	compromise	between	freshness	of	data	and	
maintenance	costs.	But	recent	developments	such	as	FAS	(freshness-aware	schedul-
ing)	or	relaxed	currency	constraints	allow	to	explicitly	trade	freshness	of	data	for	
query performance, while at the same time not sacrificing correctness:

1.	 The	requested	freshness	limit	of	queries	is	always	met;	and
2.	 Data	 accessed	within	 a	 transaction	 is	 consistent,	 independent	 of	 its	 fresh-

ness.	

The	presented	middleware-based	cluster	architecture	proved	 to	be	very	scalable	
and	it	also	shows	that	freshness-aware	scheduling	effectively	allows	users	to	trade	
freshness	of	data	for	faster	query	response	time.	It	makes	use	of	the	different	degrees	
of	freshness	of	the	OLAP	nodes	in	the	cluster	in	order	to	serve	such	queries,	which	
agree	to	access	less	fresh	data	sooner	than	queries	asking	for	the	latest	data.	The	
proposed	architecture	has	been	implemented	as	part	of	the	PowerDB	project	at	ETH	
Zurich,	and	we	conducted	an	extensive	performance	evaluation	using	the	TPC-R	
benchmark.	An	important	result	is	that	the	system	scales	linearly,	even	if	providing	
clients	access	to	up-to-date	data	in	a	database	cluster	with	128	nodes.

2�0 Röhm

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

References

Akal,	F.,	Türker,	C.,	Schek,	H.-J.,	Breitbart,	Y.,	Grabs,	T.,	&	Veen,	L.	(2005).	Fine-
grained	 replication	 and	 scheduling	with	 freshness	 and	 correctness	 guaran-
tees.	In	Proceedings of the 31st VLDB Conference on Very Large Databases,
Trondheim, Norway.

Alonso,	G.,	Blott,	S.,	Feßler,	A.,	&	Schek,	H.-J.	(1997,	May	12-14).	Correctness	
and	parallelism	of	composite	systems.	In	Proceedings of the Sixteenth ACM
SIGMOD Symposium on Principles of Database Systems (PODS),	Tucson,	
Arizona	(pp.	197-208).	ACM	Press.

Baru,	C.	K.,	Fecteau,	G.,	Goyal,	A.,	Hsiao,	H.,	 Jhingran,	A.,	Padmanabhan,	S.,	
Copeland,	G.	P.,	&	Wilson,	W.	G.	(1995).	DB2	parallel	edition.	IBM Systems
Journal, 34(2),	292-322.

Breitbart,	Y.,	Komondoor,	R.,	Rastogi,	R.,	Seshadri,	S.,	&	Silberschatz,	A.	(1999,	
June	1-3).	Update	propagation	protocols	for	replicated	databases.	In	Proceed-
ings of the 1999 ACM SIGMOD International Conference on Management of
Data,	Philadelphia	(pp.	97-108).	ACM	Press.

Carey,	M.	J.,	Livny,	M.,	&	Lu,	H.	(1985,	May	13-17).	Dynamic	task	allocation	in	
a	distributed	database	system.	In	Proceedings of the Fifth International Con-
ference on Distributed Computing Systems (ICDCS),	Denver,	Colorado	(pp.	
282-291).	IEEE	Computer	Society.	

Carey,	M.	J.,	&	Lu,	H.	(1986,	May	28-30).	Load	balancing	in	a	locally	distributed	
database	system.	In	Proceedings of the 1986 ACM SIGMOD International
Conference on Management of Data, Washington,	DC	(pp.	108-119).	ACM	
Press.

Chakrabarti,	K.,	Garofalakis,	M.	N.,	Rastogi,	R.,	&	Shim,	K.	(2000,	September	10-
14).	Approximate	query	processing	using	wavelets.	In	Proceedings of the 26th
International Conference on Very Large Data Bases (VLDB),	Cairo,	Egypt	
(pp.	111-122).	Morgan	Kaufmann	Publisher.

Chaudhuri,	S.,	&	Dayal,	U.	(1997).	An	overview	of	data	warehousing	and	OLAP	
technology.	SIGMOD Record, 26(1),	65-74.

Gallersdörfer,	R.,	&	Nicola,	M.	(1995,	September	11-15).	Improving	performance	
in	replicated	databases	through	relaxed	coherency.	In	Proceedings of the 21st
International Conference on Very Large Data Bases (VLDB),	Zurich,	Swit-
zerland	(pp.	445-456).	Morgan	Kaufmann	Publishers.

Ghandeharizadeh,	S.,	DeWitt,	D.	J.,	&	Qureshi,	W.	(1992,	June	2-5).	A	performance	
analysis	of	alternative	multi-attribute	declustering	strategies.	In	Proceedings of
the 1992 ACM SIGMOD International Conference on Management of Data,	
San	Diego	(pp.	29-38).	.	ACM	Press.

OLAP with a Database Cluster 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Gray,	J.	(1999).	How high is high performance transaction processing?	Paper	pre-
sented	at	the	1999	Workshop	on	High	Performance	Transaction	Processing	
Systems	(HPTS),	Asilomar,	California.	

Gray,	J.,	Helland,	P.	,	O’Neil,	P.	E.,	&	Shasha,	D.	(1996,	June	4-6).	The	dangers	of	
replication	and	a	solution.	In	Proceedings of the 1996 ACM SIGMOD Confer-
ence,	Montreal,	Quebec,	Canada	(pp.	173-182).

Guo,	H.,	Larson,	P.,	Ramakrishnan,	R.,	&	Goldstein,	J.	(2004,	June	13-18).	Relaxed	
currency	and	consistency:	How	to	say‚	Good	Enough’	in	SQL.	In	Proceedings
of the 2004 ACM SIGMOD Conference,	Paris.

Gupta,	A.,	&	Mumick,	I.	S.	(1995).	Maintenance	of	materialized	views:	Problems,	
techniques,	 and	 applications.	 IEEE Database Engineering Bulletin, 18(2),	
3-18.	

Kemme,	B.	(2000).	Database replication for clusters of workstations.	Doctoral	dis-
sertation	ETH	No.	13864,	ETH	Zurich,	Departement	of	Computer	Science.

Mehta,	M.,	&	DeWitt,	D.	J.	(1997).	Data	placement	in	shared-nothing	parallel	da-
tabase	systems.	VLDB Journal, 6(1),	53-72.	

Pacitti,	E.,	&	Simon,	E.	(2000).	Update	propagation	strategies	to	improve	freshness	
in	lazy	master	replicated	databases.	VLDB Journal, 8(3-4),	305-318.

Rahm,	E.	(1992).	A	framework	for	workload	allocation	in	distributed	transaction	
processing	systems.	Systems Software Journal, 18,	171-190.

Röhm,	U.	(2002).	Online Analytical Processing with a Cluster of Databases.	Doc-
toral	thesis,	DISDBIS	80,	Aka	Verlag,	Berlin.	

Röhm,	U.,	Böhm,	K.,	&	Schek,	H.-J.	(2000,	March	27-31).	OLAP	query	routing	and	
physical	design	in	a	database	cluster.	In	Zaniolo	et	al.	(Ed.),	Proceedings of
the Sixth International Conference on Extending Database Technology	(LNCS	
1777,	pp.	254-268).	Konstanz,	Germany:	Springer-Verlag.	

Röhm,	U.,	Böhm,	K.,	&	Schek,	H.-J.	(2001,	April	2-6).	Cache-aware	query	routing	
in	a	cluster	of	databases.	In	Proceedings of the 17th International Conference
on Data Engineering (ICDE)	 (pp.	 641-650).	 Heidelberg,	 Germany:	 IEEE	
Computer	Society.

Röhm,	U.,	Böhm,	K.,	Schek,	H.-J.,	&	Schuldt,	H.	(2002,	August	20-23).	FAS:	A	
freshness-sensitive	coordination	middleware	for	a	cluster	of	OLAP	components.	
In	Proceedings of the 28th International Conference on Very Large Data Bases
(VLDB)	(pp.	754-765),	Hong	Kong,	China:	Morgan	Kaufmann	Publishers.	

Schek,	H.-J.,	Böhm,	K.,	Grabs,	T.,	Röhm,	U.,	Schuldt,	H.,	&	Weber,	R.	(2000,	June	
19-21).	Hyperdatabases.	In	Proceedings of the First International Conference
on Web Information System Engineering (WISE)	 (pp.	14-25).	Hong	Kong,	
China:	IEEE	CS	Press.

2�2 Röhm

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Thomasian,	A.	(1987,	September).	A	performance	study	of	dynamic	load	balancing	
in	distributed	systems.	In	Proceedings of the Seventh International Conference
on Distributed Computing Systems (ICDCS)	(pp.	178-184).	Berlin,	Germany.	
IEEE	Computer	Society.	

Weikum,	G.,	&	Schek,	H.-J.	(1992).	Concepts	and	applications	of	multilevel	transac-
tions	and	open	nested	transactions.	In	A.	K.	Elmagarmid	(Ed.),	Database trans-
action models for advanced applications	(pp.	515-553).	Morgan	Kaufmann.

Weikum,	G.,	&	Vossen,	G.	 (2001).	 Transactional information systems: Theory,
algorithms, and the practice of concurrency control and recovery. Morgan	
Kaufmann	Publishers.

Wu,	 S.,	 &	 Kemme,	 B.	 (2005).	 Postgres-R(SI):	 Combining	 replica	 control	 with	
concurrency	control	based	on	snapshot	isolation.	In	Proceedings of the 21st
International Conference on Data Engineering (ICDE), Tokyo,	Japan.

Yu, P. S., Cornell, D. W., Dias, D. M., & Iyer, B. R. (1987). Analysis of affinity based
routing	in	multi-system	data	sharing.	Performance Evaluation, 7,	87-109.

Toward Integrating Data Warehousing with Data Mining Techniques 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Chapter.XI

Toward.Integrating.
Data.Warehousing.
with.Data.Mining.

Techniques
Rokia Missaoui

Université du Québec en Outaouais, Canada

Ganaël Jatteau
Université du Québec en Outaouais, Canada

Ameur Boujenoui
University of Ottawa, Canada

Sami Naouali
Université du Québec en Outaouais, Canada

Abstract

In this chapter, we present alternatives for coupling data warehousing and data
mining techniques so that they can benefit from each other’s advances for the ul-
timate objective of efficiently providing a flexible answer to data mining queries
addressed either to a bidimensional (relational) or a multidimensional database. In
particular, we investigate two techniques: (1) the first one exploits concept lattices
for generating frequent closed itemsets, clusters and association rules from multi-
dimensional data, and (2) the second one defines new operators similar in spirit to

2�4 Missaoui, Jatteau, Boujenoui, & Naouali

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

online analytical processing (OLAP) techniques to allow “data mining on demand”
(i.e., data mining according to user’s needs and perspectives). The implementation
of OLAP-like techniques relies on three operations on lattices, namely selection,
projection and assembly. A detailed running example serves to illustrate the scope
and benefits of the proposed techniques.

Introduction

Data	mining	(DM)	is	the	process	of	discovering	hidden	knowledge	(i.e.,	patterns	and	
associations)	from	large	data	sets	while	data	warehousing	(DW)	aims	at	integrating	
and	aggregating	data	from	multiple	data	sources	for	further	analysis	(Chaudhuri	&	
Dayal,	1997;	Han	&	Kamber,	2000).	The	two	technologies	present	some	common	
features	such	as	(1)	information/knowledge	extraction	from	very	large	data	sets,	
(2)	support	for	decision	making,	(3)	use	of	background	knowledge	for	additional	
information	(knowledge)	extraction,	and	(4)	need	for	a	careful	and	generally	time-
consuming	data	preprocessing	step.	
There	are	many	topics	that	have	attracted	researchers	in	the	area	of	data	warehous-
ing: data warehouse design and multidimensional modeling, efficient cube com-
putation,	query	optimization,	discovery-driven	exploration	of	cubes,	data	mining	
in	cubes,	and	so	on.	In	order	to	avoid	computing	a	whole	data	cube,	many	studies	
have	focused	on	iceberg	cube	calculation	(Xin,	Han,	Li,	&	Wah,	2003),	semantic	
summarization	of	cubes	(Lakshmanan,	Pei,	&	Zhao,	2002),	and	approximation	of	
cube	computation	(Shanmugasundaram,	Fayyad,	&	Bradley,	1999).	Recently,	there	
is	an	increasing	interest	for	applying/adapting	data	mining	techniques	and	advanced	
statistical	analysis	(e.g.,	cluster	analysis,	principal	component	analysis,	log-linear	
modeling)	for	knowledge	discovery	(Ben	Messaoud,	Boussaïd,	&	Rabaséda,	2004;	
Lu,	Feng,	&	Han,	2000;	Sarawagi,	Agrawal,	&	Megiddo,	1998)	and	data	compres-
sion	or	query	approximation	purposes	in	data	cubes	(Babcock,	Chaudhuri,	&	Das,	
2003;	Barbara	&	Wu,	2001).
The	objective	of	this	chapter	is	to	propose	techniques	for	reinforcing	the	collabora-
tion	and	linkage	between	DW	and	DM	techniques	by	using	formal	concept	analysis	
and	concept	lattices	(Ganter	&	Wille,	1999)	as	a	sound	and	theoretical	framework	
for data mining. More precisely, we first present our view of rule mining in data
cubes.	Then,	we	adapt	the	interactive	exploratory	mechanisms	inherent	to	online	
analytical	processing	(OLAP)	techniques	to	the	framework	of	data	mining	tools	and	
techniques	in	order	to	help	the	user	select	the	appropriate	subset	of	an	already	exist-
ing data mining output. To conduct the first task, we discuss association rule mining
in	multidimensional	data	and	show	how	cube	clustering	using	concept	lattices	and	
frequent	closed	 itemsets	can	be	exploited	for	generating	meaningful	association	

Toward Integrating Data Warehousing with Data Mining Techniques 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

rules. For the second task, we provide a formal definition and an interpretation of
OLAP operations for exploratory data mining by redefining key OLAP operations
in	the	framework	of	concept	lattices	using	three	operations:	selection,	projection,	
and	assembly	of	lattices.
The	chapter	is	organized	as	follows.	First,	an	illustrative	example	about	corporate	
governance	quality	in	Canadian	organizations	is	described	in	the	next	section	and	
will	serve	to	show	the	potential	of	the	proposed	solution.	We	then	provide	some	
background	about	data	warehousing	and	data	mining	techniques	and	give	an	over-
view	of	related	work.	Our	efforts	towards	the	integration	of	the	two	technologies	
are	described	later,	followed	by	a	conclusion	and	further	work.

A.Running.Example

The	present	running	example	will	be	used	throughout	this	chapter	to	illustrate	our	
solution	towards	the	integration	of	DM	and	DW	technologies.	It	is	based	on	a	study	
conducted	on	a	sample	of	216	Canadian	companies	listed	on	the	Stock	Market	and	
aimed	at	establishing	links	between	corporate	governance	practices	and	other	vari-
ables	such	as	the	shareholding	structure.	In	the	context	of	this	study,	governance	
is defined as the means, practices and mechanisms put in place by organizations to
ensure	that	managers	are	defending	shareholders’	interests.	Governance	practices	
include,	but	are	not	limited	to,	the	size	and	the	composition	of	the	board	of	directors,	
the	number	of	independent	directors	and	women	sitting	on	the	board	as	well	as	the	
duality	between	the	position	of	CEO	and	the	position	of	board	chairman.
The	data	used	in	this	study	were	mainly	derived	from	an	article	published	in	October	
7,	2002	in	the	Canadian	Globe and Mail	newspaper,	which	discussed	the	quality	of	
governance	practices	in	a	sample	of	companies.	More	precisely,	the	mentioned	article	
provided	a	global	evaluation	of	corporate	governance	practices	in	each	company	
and assessed five governance practices: the composition of the board of directors,
the	shareholding	system	(or	control	structure	which	includes	internal	shareholders,	
blockholders	and	institutional	investors),	the	compensation	structure	for	managers,	
the	shareholding	rights	and	the	information	sharing	system.
Data	related	to	the	types	of	shareholding	systems,	the	associated	percentage	of	vot-
ing	rights	and	the	total	assets	of	each	company	were	obtained	from	the	“StockGuide	
2002”	database.	Data	related	to	the	size	of	the	board,	the	number	of	independent	
directors	and	women	sitting	on	the	board,	as	well	as	the	duality	between	the	position	
of	CEO	and	the	position	of	board	chairman	were	extracted	from	the	“Directory	of	
Directors”	of	the	Financial	Post	newspaper.
Based	on	the	collected	data,	a	data	warehouse	has	been	constructed	with	sixteen	
dimensions	and	an	initial	set	of	fact	tables	for	data	cube	design	and	exploration.	

2�6 Missaoui, Jatteau, Boujenoui, & Naouali

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

The	left-hand	side	(LHS)	of	Table	1	is	a	fact	table	which	provides	the	number	of	
enterprises	(NbEntr)	according	to	three	dimensions:	duality,	internal,	and	govern,	
while	the	right-hand	side	(RHS)	gives	AvgAsset, a codification of the average com-
pany	asset	according	to	the	same	set	of	dimensions.	The	value	of	AvgAsset	is	1	when	
the	average	asset	is	less	than	1,000K	and	2	otherwise.	When	Duality	is	set	to	1,	
this	means	that	the	CEO	is	also	the	board	chairman.	Dimension	Internal	represents	
the	proportion	of	Top	Management	sitting	on	the	board,	and	its	possible	values	are	
1 (proportion < 10%), 2 (≥ 10 and < 25%), and 3 (≥ 25%). Govern	expresses	the	
index	of	corporate	governance	quality	(or	simply quality	index)	and	takes	one	of	
the following values (from bad to good quality): 1 (quality < 40%), 2 (≥ 40 and <
70%), and 3 (≥ 70%).

Background

In this section, we first provide some background on data warehousing and OLAP
techniques.	Then,	we	recall	basic	notions	about	the	framework	we	use	to	identify	

Fact	ID Duality Internal Govern AvgAsset

1 0 1 2 2

2 0 1 3 2

3 0 2 1 1

4 0 2 2 2

5 0 2 3 2

6 0 3 2 1

7 0 3 3 1

8 1 1 2 2

9 1 1 3 2

10 1 2 1 1

11 1 2 2 2

12 1 2 3 2

13 1 3 1 1

14 1 3 2 2

15 1 3 3 1

Fact	ID Duality Internal Govern NbEntr

1 0 1 2 23

2 0 1 3 20

3 0 2 1 1

4 0 2 2 50

5 0 2 3 23

6 0 3 2 16

7 0 3 3 3

8 1 1 2 4

9 1 1 3 4

10 1 2 1 1

11 1 2 2 32

12 1 2 3 3

13 1 3 1 2

14 1 3 2 30

15 1 3 3 4

Table 1. (a) Fact table with COUNT aggregate; (b) Fact table with AVG aggre-
gate

(a) (b)

Toward Integrating Data Warehousing with Data Mining Techniques 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

clusters	(groupings)	and	mine	association	rules.	Finally,	some	related	studies	about	
integrating	DW	with	DM	techniques	will	be	presented.

Data.Warehousing

A	data	warehouse	is	an	integration	of	consolidated	and	non	volatile	data	from	mul-
tiple	and	possibly	heterogeneous	data	sources	for	the	purpose	of	decision	support	
making.	It	contains	a	collection	of	data	cubes	which	can	be	exploited	via	OLAP	
techniques	such	as	drill-down	and	rollup	in	order	to	summarize,	consolidate,	and	
view	data	according	to	different	dimensions	(Chaudhuri	&	Dayal,	1997).	In	a	mul-
tidimensional	context	with	a	set	D	of	dimensions,	a	dimension	(e.g.,	location	of	a	
company,	time)	is	a	descriptive	axis	for	data	presentation	under	several	perspectives.	
A	dimension	hierarchy	contains	levels,	which	organize	data	into	a	logical	structure	
(e.g.,	country,	state	and	city	for	the	location	dimension).	A	fact	table	(see	Table	1)	
contains	numerical	measures	and	keys	relating	facts	to	dimension	tables.	A	cube	
C=<D,M>	is	a	visual	representation	of	a	fact	table,	where	D	is	a	set	of	dimensions	
of	the	cube	(with	associated	hierarchies)	and	M	its	corresponding	measures.

Data.Mining

Data	mining	is	a	crucial	step	in	the	process	of	knowledge	discovery	in	databases	
(KDD),	which	aims	at	discovering	hidden	patterns	and	relationships	in	a	data	col-
lection	for	prediction	and	decision-making	purposes.	Major	data	mining	functions	
include characterization, comparison, classification, association, prediction, cluster
analysis,	and	time-series	analysis	(Han	&	Kamber,	2000).	Association	rule	mining	
is	by	far	the	most	frequently	used	DM	technique.
As	pointed	out	by	Imielinski	and	Mannila	(1996),	a	KDD	system	should	offer	two	
major	functionalities:	generating	KDD	objects	(i.e.,	DM	output)	and	retrieving	the	
ones	that	were	already	extracted.	This	observation	comes	from	the	fact	that	in	re-
lational	databases,	the	output	of	a	query	is	a	table	that	can	be	queried	later	like	any	
basic	table.	We	fully	adhere	to	this	opinion	to	apply	the	so-called	closure	principle	
to KDD systems, and we define a set of operations on data mining output.

Association Rule Mining

Mining	association	rules	from	a	given	database	of	transactions	consists	to	generate	all	
association rules that have user-specified minimum support and confidence (Agrawal
&	Srikant,	1994).	Let	I={i1, i2,..., im}	be	a	set	of	m	distinct	items	(e.g.,	milk,	bread).	
A	transaction	T contains a set of items in I, and has an associated unique identifier

2�8 Missaoui, Jatteau, Boujenoui, & Naouali

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

called	TID.	A	subset	Y	of	I	where	k=|Y|	is	referred	to	as	a	k-itemset	(or	simply	an	
itemset),	and	k	is	called	the	length	of	Y.	A	transaction	database	TD	is	the	whole	set	
of	transactions.	A	set	X ⊆	TD	is	called	a	tidset	while	the	fraction	of	transactions	in	
TD	that	contains	an	itemset	Y	is	called	the	support	of	Y	and	is	denoted	by	supp(Y).	
Thus,	an	itemset	is	frequent	(or	large)	when	supp(Y)	reaches	at	least	a	user-speci-
fied minimum threshold called minsupp.
An	association	rule	r	is	an	implication	of	the	form	Y1	⇒ Y2,	where	Y1	and	Y2	are	
subsets	of	I,	Y1∪Y2	is	a	frequent	itemset,	and	Y1	∩ Y2	=	∅.	The	support	of	the	rule	r	
is	equal	to	supp(Y1∪Y2) while its confidence is computed as the ratio supp(Y1∪Y2)/
supp(Y1).
In	our	running	example,	an	association	rule	could	be	the	following:	

•	 Female	=	1	and	Internal	=	1	⇒	Govern	=	3	[10%,	52%].	The	rule	means	that	
if	there	are	females	on	the	board	and	if	the	proportion	of	Top	Management	
sitting	on	the	board	is	less	than	10%	(i.e.,	Internal	=	1),	then	the	quality	of	
governance is good (at least equal to 70%) with a confidence of 52%.

In	Apriori-like	algorithms	(Agrawal	&	Srikant,	1994),	rule	mining	is	conducted	as	
follows.	For	every	frequent	itemset	Y,	all	nonempty	subsets	of	Y	are	extracted.	Then,	
for	every	subset	Y1 of	Y,	a	rule	of	the	form	Y1	⇒ Y2 is generated if its confidence ≥
minconf (a user-defined threshold).
Since	the	introduction	of	Apriori,	a	variety	of	approaches	to	the	problem	of	asso-
ciation	rule	mining	has	been	proposed.	The	main	objective	of	most	of	them	is	to	
improve the efficiency of the basic method, while the key difficulty is the poten-
tially	large	number	of	frequent	itemsets	(FIs).	To	reduce	the	size	of	the	FI	set,	some	
studies	were	conducted	on	frequent	closed	itemsets	FCIs	(Pasquier,	Taouil,	Bastide,	
Stumme,	&	Lakhal,	2005;	Wang	&	Karypis,	2003;	Zaki	&	Hsiao,	2002).	A	frequent	
itemset	X	is	closed	if	there	exists	no	proper	superset	Z	of	Y	with	supp(Y)=supp(Z).	
In	other	words,	any	itemset	has	the	same	support	(i.e.,	is	frequent)	as	its	closure.	In	
a	dual	way,	a	tidset	X	is	closed	if	there	exists	no	proper	superset	U	of	X	such	that	U	
and	X	have	the	same	set	of	items.	
In	the	closed	itemset	framework,	some	studies	were	concerned	with	the	generation	
of	nonredundant	sets	of	association	rules	(Pasquier	et	al.,	2005;	Pfaltz	&	Taylor,	
2002;	Valtchev,	2002b)	where	Y1	is	a	generator,	that	is,	a	minimal	subset	of	Y	such	
that	its	closure	is	equal	to	Y.
The	following	is	a	summary	of	the	key	results	from	concept	lattice	theory	(Ganter	
&	Wille,	1999),	which	provides	the	basis	of	our	approach	towards	the	generation	
of	frequent	closed	itemsets	and	association	rules	as	well	as	manipulation	of	DM	
output	and	visualization	using	a	nested	structure.	

Toward Integrating Data Warehousing with Data Mining Techniques 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Concept Lattices

Let	K =	(O,	A,	R)	be	a	formal	context	(see	Table	2),	where	O,	A,	and	R	are	a	set	of	
objects	(e.g.,	transactions),	a	set	of	attributes	or	properties	(e.g.,	items	in	a	transaction	
database),	and	a	binary	relation	between	O	and	A,	respectively.	Two	functions	f	and	
g	summarize	the	links	between	subsets	of	objects	and	subsets	of	attributes	induced	
by	R.	Function	f	maps	a	set	of	objects	into	a	set	of	common	attributes,	whereas	g	
is	the	dual	for	attribute	sets:	

• f:P	(O)→	P (A), f(X)=X’={a ∈	A|∀o ∈	X,	oRa},	where	P	(O) is	the	power	set	
of	O.

• g:	P (A)→	P (O),	g(Y)=Y’={o ∈	O|∀a ∈	Y,	oRa}.	

Table	2	shows,	for	example,	that	f({2,	6})	=	{a, b}	and	g({a, c, d})	=	{6,	7,	8}1.
Furthermore,	the	compound	operators	g°f(X)	and	f°g(Y)	(denoted	by	'')	are	closure	
operators	over	P	(O)	and	P	(A)	respectively.	This	means,	in	particular,	that	Z ⊆	Z''	
and	(Z'')''=Z''	for	any	Z∈	P	(A)	or	Z ∈	P	(O).	
A	formal	concept	c	is	a	pair	of	sets	(X,	Y)	where	X ∈	P	(O),	Y ∈	P	(A),	X=Y’	and	
Y=X’.	X	is	called	the	extent	of	c	(denoted	by	Extent(c))	and	Y	represents	its	intent	
(denoted	by	Intent(c)).	The	notion	of	concept	is	then	nothing	but	a	cluster	since	it	
consists	of	objects	grouped	together	by	proximity	or	similarity	(here,	according	to	
a	common	intent).	In	the	closed	itemset	mining	framework	(Pasquier	et	al.,	2005;	
Valtchev	et	al.,	2002b;	Zaki	et	al.,	2002),	X	and	Y	correspond	to	the	notion	of	closed	
tidset	and	closed	itemset	respectively.

Table 2. Context K = (O={1, 2,...,8}, A={a, b,..., h, i}, R)

A

A1 A2

	Tid a b c d e f g h i

1 X X X

2 X X X X

3 X X X X X

4 X X X X X

5 X X X X

6 X X X X X

7 X X X X

8 X X X X

260 Missaoui, Jatteau, Boujenoui, & Naouali

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

The	set	G	of	all	concepts	extracted	from	the	context	K	is	partially	ordered	by	in-
tent/extent	inclusion:	

(X1,	Y1) ≤ (X2,	Y2)	⇔	X1	⊆	X2,	Y2	⊆	Y1.

A	concept	(Galois)	lattice	associated	with	context	K	is	then	a	complete	lattice	L=B(O,	
A,	R)	=		〈 G, ≤〉,	where	concepts	in	G	are	linked	according	to	a	partial	order.
The	Hasse	diagram	of	the	lattice	L	drawn	from	Table	2	is	shown	on	Figure	1	where	
tidsets	and	itemsets	are	indicated	on	both	sides	of	nodes.	For	example,	node	#11	
represents	the	concept	(678,	acd)	which	means	that	the	itemset	acd	is	a	closed	item-
set	with	three	supporting	objects:	6,	7,	and	8.
A	subset	B	of	concepts	in	G	is	an	order filter	(order ideal respectively)	if	∀a ∈	G,	b
∈	B,	b ≤ a ⇒	a∈B	(a ≤ b ⇒	a ∈	B respectively).	The	smallest	ideal	that	contains	a	
given	concept	b	in	G	is	called	a	principal ideal and is given by ↓b	=	{c	in	G	|	c ≤ b}.	
Dually, ↑b denotes the principal filter for b.	For	example	(see	Figure	1),	the	principal	
ideal	for	concept	#10	contains	concepts	labeled	by	#1,	#3,	#5,	and	#10,	while	its	
corresponding principal filter contains the set {#10, #15 , #17 , #19}.

Integrating.DM.with.DW.Techniques

Data	warehousing	and	data	mining	have	been	greatly	progressing	in	an	independent	
way.	However,	many	researchers	and	practitioners	recognize	the	need	for	a	deep	
integration	of	the	two	technologies	(Han,	1998;	Han	&	Kamber,	2000).

Figure 1. The Hasse diagram of the lattice related to context K

Toward Integrating Data Warehousing with Data Mining Techniques 26�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Some	studies	were	conducted	to	either	adapt	multidimensional	data	so	that	classical	
data	mining	techniques	can	be	used,	or	adapt	data	mining	algorithms	to	the	context	
of multidimensional data. The first solution consists for example to first flatten
multidimensional	data	before	applying	DM	techniques	(Goil	&	Choudhary,	2001)	
or to first map multidimensional data onto data sequences (Pinto et al., 2001). The
second	solution	aims	to	develop	new	solutions	or	revise	existing	ones	to	directly	
mine	multidimensional	data	as	 in	Dong,	Han,	Joyce,	Pei,	and	Wang	(2001)	and	
Imielinski,	Khachiyan,	and	Abdulghani	(2002).
Substantial	work	has	been	conducted	on	data	mining	 in	data	warehouses	as	 re-
ported	in	Han	and	Kamber	(2000).	This	includes	(but	is	not	limited	to)	exception	
detection	in	dimensional	datasets	(Knorr,	Ng,	&	Tucakov,	2000),	cubegrade	gen-
eration	(Imielinski	et	al.,	2002),	constrained	gradient	analysis	(Dong	et	al.,	2001),	
and	discovery-driven	examination	of	cubes	(Sarawagi	et	al.,	1998).	Cubegrades	are	
association	rules	which	express	the	impact	of	cube	changes	on	a	set	of	measures.	
In the context of the governance running example, cubegrades can help find (1)
how	the	average	asset	held	by	enterprises	is	affected	by	the	presence	of	females	
on	 the	board,	or	 (2)	how	the	enterprises	having	a	good	governance	 index	(70%	
and	more)	compare	with	enterprises	with	a	lower	governance	index	in	terms	of	the	
average	amount	of	assets.	In	Naouali	and	Missaoui	(2005),	an	approach	towards	
approximating the answer to OLAP queries and the identification of classification
and	characteristic	rules	is	proposed	using	the	rough	set	theory.	

Data.Mining.Techniques. for............
Data.Warehousing

In	this	section	we	focus	on	association	rule	mining	from	data	cubes.

Rule Mining from Cubes

Association	rule	mining	(ARM)	in	data	cubes	is	different	from	the	classical	ARM	
because	measures	in	data	cubes	are	aggregated	values	which	depend	intimately	on	
the	value	taken	by	each	one	of	the	cube	dimensions,	while	each	item	(respectively	
attribute)	in	transaction	databases	(resp.	relational	tables)	exists	(takes	its	value)	
in	an	independent	way	from	the	rest	of	items	(attributes).	Based	on	that	fact,	we	
revisit	the	notion	of	itemset	and	association	rule	by	imposing	additional	constraints	
on	them	in	order	to	make	them	more	meaningful	in	a	multidimensional	context.	
Two	cases	will	be	considered:	

262 Missaoui, Jatteau, Boujenoui, & Naouali

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

•	 The	cube	C=<D, M>	has	a	unique	measure	in	M,	which	corresponds	to	a	
COUNT	aggregate	function

•	 The	cube	has	at	least	a	measure	related	to	an	aggregate	function	other	than	
COUNT

In the first case, ARM from a given cube C	whose	dimensions	are	in	D	amounts	to	
ARM	from	(a	possibly	subset	of)	the	relational	table	T	that	generated	C.	However,	
support and confidence of rules need to rely on the support of each fact in C,	that	
is,	the	number	of	individual	records	in	T	that	support	the	fact.	In	the	second	case,	
we first need to impose constraints on the structure of frequent itemsets and rules
so	that	the	data	mining	output	is	meaningful.	Then,	a	careful	evaluation	and	inter-
pretation	of	such	output	is	needed	because	any	reference	to	a	given	measure	value	
must	be	expressed	in	terms	of	all	the	dimensions	involved	in	the	cube.

Frequent Closed Itemsets

Let	C=<D, M>	be	a	data	cube,	where	D	is	a	set	of	dimensions	involved	in	C,	and	
M	a	set	of	measures	associated	with	D.	When	M	is	not	limited	to	a	count-based	
measure, we define a frequent (closed) itemset Y	extracted	from	C	as	meaningful	
if	the	following	conditions	hold:	(1)	Y∩D≠∅,	and	(2)	Y∩M1≠∅,	where	M1 ⊂ M	is	
the	set	of	non-count	based	measures.	The	two	conditions	impose	the	presence	of	at	
least	one	dimension	and	one	non-count	measure	(e.g.,	MIN).
From	Table	1(b),	one	can	extract	the	frequent	(support	=	41%)	closed	itemset	{Du-
ality	=	0,	AvgAsset=2,	Govern	=	2}	which	is	meaningful	since	the	second	item	rep-
resents	a	range	value	of	the	measure	related	to	the	average	company	asset.	Instead,	
{Internal	=	3,	Govern	=	2}	is	not	a	meaningful	one.

Association Rules

Based on the observations made earlier in this section, we define two types of as-
sociation	rules:	one	which	is	computed	from	a	data	cube	whose	unique	measure	
represents	a	COUNT	aggregate	function,	and	the	other	is	computed	from	a	data	cube	
for	which	at	least	a	measure	represents	an	aggregate	function	other	than	COUNT	
(e.g,	MIN,	AVERAGE).	The	second	one	must	be	generated	from	meaningful	fre-
quent	closed	itemsets.

Definition 1:	Let	Y1	and	Y2	be	two	non-empty	subsets	of	members	in	D,	
where	D	is	a	dimension	set	in	cube	C = <D, M>	and	Y1∩ Y2 = ∅,	and	let	
X	be	the	set	of	facts	supporting	 Y1 ∪Y2.	A	couNt-bAseD multiDimeNsioNAl	

Toward Integrating Data Warehousing with Data Mining Techniques 26�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

association	rule	(CMAR)	r	drawn	from	C	is	an	implication	of	the	form	
Y1 ⇒ Y2.	The	support	of	rule	r	is:	

1 2

1

() ∈

=

=
∑
∑

jf x j
n

j

m
supp Y Y

mj ,	

where	n	is	the	total	number	of	facts,	and	mj	is	a	count	value	associated	
with	fact	fj	in	X. The confidence of r	is	computed	as	the	ratio	supp(Y1∪Y2)/
supp(Y1),	where:

1
1

1

() ∈

=

=
∑
∑

jf Y j
n

j

m
supp Y

mj 		for	all	facts	fj	supporting	Y1.	

Definition 2:	 A	 NoN-couNt-bAseD multiDimeNsioNAl	 association	 rule	
(NCMAR)	r	generated	from	a	cube	C = <D, M>	is	an	implication	of	the	
form	Y1 ⇒ Y2,	where	Y1∪ Y2	is	a	meaningful	FCI	and	Y1∩ Y2 = ∅,	and	
∃	m	a	non-count	measure	in	M	such	that	m ∈ Y1 ∪Y2.	Let	the	set	of	facts	
supporting	Y1 ∪Y2	be	X.	Then,	the	support	of	rule	r	is:	

1 2

1

() ∈

=

=
∑
∑

jf x j
n

j

m
supp Y Y

mj ,	

where	n	is	the	total	number	of	facts,	and	mj	is	a	count	value	associated	
with	fact	fj	in	X. The confidence is computed as the ratio supp(Y1∪Y2)/
supp(Y1),	where:	

1
1

1

() ∈

=

=
∑
∑

jf Y j
n

j

m
supp Y

mj 	for	all	facts	fj	supporting	Y1.	

It	is	important	to	note	that	in	the	case	of	NCMARs,	the	cube	contains	a	non-count-
based	measure	apart	 from	a	count-based	one.	The	 latter	 is	used	 to	compute	 the	
support	of	the	rule.
As	an	 illustration,	 the	 following	rules	 (CMAR	and	NCMAR	respectively)	were	
extracted	from	the	fact	tables	shown	in	Table	1	(left	and	right	sides	respectively)	
by first computing FCIs.

•	 CMAR:.Duality	=	0	and	Internal	=	2	⇒	Govern	=	2	[50/216,	(50/216)/(74/216)].	
This	means	that	if	the	CEO	does	not	act	as	a	board	chairman	and	if	the	propor-
tion	of	Top	Management	on	the	board	is	between	10	and	25%,	then	the	index	

264 Missaoui, Jatteau, Boujenoui, & Naouali

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

of	corporate	governance	quality	is	between	40	and	70%	with	a	support	=	23%	
and a confidence = 67%.

•	 NCMAR:	 Duality	 =	 0	 and	 Internal	 =	 1	 ⇒	 AvgAsset	 =	 2	 [73/216,	
(73/216)/(74/216)].	This	means	that	if	the	CEO	does	not	act	as	a	board	chair-
man	and	if	the	proportion	of	top	management	on	the	board	is	less	than	10%,	
then	the	average	asset	is	over	1000K (according to the three defined dimen-
sions) with a support = 34% and a confidence = 98%.

Data.Warehousing.Techniques............
for.Data.Mining

Many	researchers	recognize	the	need	to	have	mechanisms	for	user	exploration	and	
guidance	while	mining	from	databases	(Imielinski	et	al.,	2002)	or	browsing	through	
data	cubes	(Sarawagi	et	al.,	1998).
Since	the	output	of	a	data	mining	task	can	be	very	large	even	for	a	reasonably	small	
dataset,	our	main	objective	here	is	to	allow	the	user	to	explore	an	already	computed	
DM	output	(a	set	of	groupings/concepts	in	our	case)	in	a	discovery-driven	man-
ner	similar	to	what	is	offered	by	OLAP	techniques.	The	user	can	then	go	through	
coarser/finer levels of data abstraction (i.e., rollup vs. drill-down) when an attribute
(or	dimension)	hierarchy	is	available	(e.g.,	levels	of	company	location	are	city,	state,	
and	country),	see	a	DM	output	under	different	perspectives	(one	or	many	attributes),	
or use the dice operator to select some specific attributes (or attribute values) and/or
a	set	of	objects.	As	a	preliminary	illustration,	a	rollup	on	a	DM	output	in	our	run-
ning	example	means	either	a	reduction	in	the	number	of	perspectives	to	consider	
(e.g., financial features) or a generalization upon one or many perspectives (e.g.,
company	location).
Based on the background provided earlier, we define a set of operators inspired
from	OLAP	techniques	(e.g.,	drill-down,	slice),	which	act	like	relational	algebra	
by	operating	on	concept	lattices	to	get	new	ones.	

Operations.on.Lattices

In this subsection, we formally define three main operations on lattices: projection,
selection,	and	assembly.	More	details	about	theoretical	results	can	be	found	in	Ganter	
and	Wille	(1999)	and	Valtchev	et	al.	(2002a).
The	projectioN	of	L =	B(O,	A,	R)	over	A1	⊂	A	is	given	by	the	following	mapping:	
ϕ: L→L1= B(O, A1, R1).	

Toward Integrating Data Warehousing with Data Mining Techniques 26�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Function	ϕ	maps	a	concept	(X,	Y)	from	the	lattice	L	into	a	concept	of	the	result-
ing	lattice	L1	by	projecting	its	intent	over	the	attribute	set	A1:	ϕ ((X,Y))=((Y∩A1)',	
Y∩A1),	where	the	operator	'	upon	an	extent	(respectively	an	intent)	returns	an	intent	
(respectively	an	extent)	in	L1.	
When	A1	represents	the	intent	of	an	existing	concept	c	in	L,	then	L1	is	nothing	but	
the principal filter of c	enriched	with	the	partial	order.	
The	Assembly	of	two	lattices	L1=B(O, A1, R1)	and	L2=B(O, A2, R2)	according	to	a	same	
set	O	of	objects	is	a	substructure	of	the	direct	product	of	L1	and	L2 defined by:

ψ: L1=B(O, A1, R1)	×	L2=B(O, A2, R2) → L=B(O, A1∪A2, R1∪R2).

Function ψ maps a pair of concepts from L1	and	L2	into	a	global	concept	by	an	inter-
section over their respective extents: ψ (〈	(X1,Y1),(X2,Y2)〉)	=	(X1∩X2,	(X1∩X2)').	
The assembly of lattices can be used not only to “join” lattices, but also to define
nested	line	diagrams	as	described	in	the	Visualization	Mechanisms	section.
Figure	2	illustrates	the	projection	of	lattice	L	onto	the	subset	abcd and	efghi	to	get	
new	lattices	L1	and	L2.	The	assembly	of	L1	and	L2	produces	lattice	L.
The	selectioN	operation,	applied	to	a	lattice	L=B(O,	A,	R),	produces	a	new	lattice	
in	which	a	subset	O1	of	O	is	considered.	This	operation	is	dual	to	the	projection	and	
is	given	by	the	mapping	ξ: L→L3= B(O1, A, R3).
The	function	ξ	maps	a	concept	(X,	Y)	from	the	lattice	L	into	a	concept	of	the	result-
ing	lattice	L3	by	selecting	a	set	O1 of	objects:	

ξ ((X,Y))=(X ∩ O1, (X ∩ O1)').

Figure 2. Projection of L on two distinct attribute subsets abcd and efghi to pro-
duce L1 and L2

266 Missaoui, Jatteau, Boujenoui, & Naouali

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

For	example	(see	Figure	2),	the	selection	on	L1	on	the	set	{1,	2,	3,	4}	is	a	lattice	that	
has	the	following	concept	set:	{(1234,	a),	(123,	ab),	(34,	ac),	(3,	abc),	(∅,	abcd)}.
When	O1 represents	the	extent	of	an	existing	concept	c	in	L,	then	L3	is	nothing	but	
the	principal	ideal	of	c	enriched	with	the	partial	order.	

Operations.on.Data.Mining.Output

In	the	following,	we	show	how	known	OLAP	operations	(drill-down,	rollup,	slice,	
and	dice)	can	be	translated	in	our	data	mining	concept	lattice	framework	as	a	com-
bination	of	operations	on	lattices	such	as	selection,	projection,	and	assembly	(noted	
respectively by σ, Π, and ×). As stated earlier in the section Integrating DM with
DW	Techniques,	these	operations	can	be	assimilated	to	cubing	for	exploratory	data	
mining.
The operations can be defined as follows:

• Rollup:	go	up	the	attribute	hierarchy	of	one	or	many	attributes	(e.g.,	go	from	
sector	to	sector	category)	or	ignore	a	subset	of	attributes.	

• Drill-down:	go	down	the	attribute	hierarchy	of	one	or	many	attributes	or	add	
a	new	attribute	(e.g.,	introduce	CEO’s	education).	

• Slice:	limit	the	analysis	to	a	given	attribute/property	(e.g.,	proportion	of	in-
ternal	shareholders	on	the	board).	

• Dice:.focus	on	a	subset	of	attributes	and/or	objects	(e.g.,	features	about	board	
structure for firms working on some given industry sectors).

Additional exploratory operations can be defined (e.g, drill-through, nest-unnest, split).
In the sequel, we first provide a formal definition of the four key OLAP operations
by	borrowing	the	well-known	notations	used	in	relational	algebra.	Then,	algorithms	
for	implementing	the	projection	and	assembly	are	proposed	and	discussed.

Definition of OLAP Operations

In the following, we redefine four commonly known OLAP operations when they
apply	to	a	DM	output	that	takes	the	form	of	a	concept	lattice.	

Toward Integrating Data Warehousing with Data Mining Techniques 26�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Rollup

Let	P ⊆	A	be	the	attributes	of	a	given	relational	(or	fact)	table	on	which	the	rollup	
will	be	conducted	either	by	climbing	up	attribute	hierarchies	or	by	dropping	at-
tributes,	and	let	L=B(O,	A,	R)	be	a	concept	lattice.	Assume	that	AL={〈A1, l1i〉,...,〈Aj,
ljm〉,	...}	is	a	given	pattern	of	the	rollup	(i.e.,	level	climbing),	where	〈Aj, ljm〉	means	the	
hierarchy	attached	to	attribute	j	is	to	be	climbed	from	the	current	level	to	a	higher	
level	ljm.	The	size	of	AL	represents	the	maximal	number	of	attributes	for	which	the	
attribute	hierarchy	needs	to	be	explored	bottom	up,	and	hence	|AL|= |P|.	The	op-
eration	Rollup(L,	P,	AL)	uses	the	lattice	L	as	input	to	produce	a	new	concept	lattice	
in	which	the	attributes	in	P	are	either	replaced	with	more	general	ones	or	ignored.	
When	ljm = for	a	given	attribute	Aj,	 this	means	that	attribute	Aj	 is	temporarily	
discarded	from	analysis.
Like	in	data	cubes,	the	rollup	operation	reduces	the	output	set	while	the	drill-down	
operation	increases	the	size	of	the	output.	Therefore,	the	lattice	resulting	from	a	
rollup	is	smaller	than	the	initial	one.
The	algebraic	representation	of	Rollup(L,	P,	AL)	using	the	projection	and	assembly	
is	as	follows:

Rollup(L,	P,	AL)	=)()(1LLPA ×Π − ,	where	L	and	L1	correspond	to	B(O, A, R) and	
B(O, A1, R1)	respectively,	and	A1	is	the	set	of	|P|	attributes	generalized	according	
to	the	pattern	AL.

Example:.Figure	3	illustrates	a	rollup	of	lattice L1	(see	Figure	2)	upon	
an	attribute	by	climbing	up	the	hierarchy	from	the	level	containing	c	and	
d	to	a	higher	level	containing	k.

Figure 3. Rollup of L1 by replacing c and d with a more general value k

268 Missaoui, Jatteau, Boujenoui, & Naouali

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Drill-Down

In	a	symmetric	way,	Drill-down(L,	P,	AL) can be defined, where ljm	in	AL	means	
that	the	attribute	hierarchy	attached	to	Aj	is	to	be	explored	from	the	current	level	
to	a	lower	level	ljm.	Such	operation	uses	L	as	input	to	produce	a	new	concept	lat-
tice	resulting	from	the	context	in	which	the	attributes	in	P	are	replaced	with	more	
specific ones. When ljm	=	^ for	a	given	attribute	Aj,	this	means	that	attribute	Aj	is	a	
new	attribute	to	be	considered	for	data	mining.
The	algebraic	representation	of	Drill-down(L,	P,	AL)	is	the	same	as	the	one	for	the	
rollup	operation.	The	difference	lies	in	the	fact	that	for	the	drill-down	operation,	Al	
is	the	set	of	P	attributes	specialized	(through	a	move	down	in	the	attribute	hierar-
chies)	according	to	the	pattern	AL.

Slice

Slice(L, ai)	limits	the	analysis	of	a	concept	lattice	L	to	a	given	attribute	ai	in	order	to	
see	its	corresponding	lattice.	It	is	important	to	note	that	in	data	cubes,	this	operation	
consists	in	selecting	a	given	value	for	one	dimension.	However,	we	generalize	it	to	
a given attribute (with its possible values) to allow the definition of new operations
(e.g.,	nesting)	based	on	the	slice	operation.
The	algebraic	representation	of	the	slice	operation	is:

Slice(L, ai)	=	Πai (L).

In	our	running	example,	Slice(L, Internal)	will	provide	the	lattice	limited	to	the	
dimension	(attribute)	Internal.

Dice

Dice(L,	P,	Q)	limits	the	analysis	to	an	arbitrary	subset	Q	of	objects	and/or	a	subset	
P of attributes. Here again, our definition of the dice operation in concept lattices
has	a	meaning	relatively	distinct	from	the	dice	operation	in	data	cubes.	
The	algebraic	representation	of	the	dice	operation	is:

Dice(L,	P,	Q)	=
	

))((LPio Q Π∈ 	
where	Q ⊂	O	and/or	P ⊂	A.

Toward Integrating Data Warehousing with Data Mining Techniques 26�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

For	example,	one	would	like	to	focus	his/her	analysis	of	the	lattice	L	to	companies	
1,	2,	and	3	using	shareholding	features	only.

Algorithms

Now that the OLAP operations acting on DM output are formally defined using
operations	on	lattices,	we	describe	hereafter	algorithms	for	the	implementation	of	
projection	and	assembly.
Algorithm	1	implements	the	projection	and	has	two	arguments:	the	attribute	set	P	
to	be	projected	on,	and	the	node	n which is initially set to the infimum (i.e., the bot-
tom	of	the	lattice).	It	handles	a	traversal	of	the	lattice	in	a	recursive	way	from	the	
bottom	to	the	top	(supremum).	The	ascending	part	of	recursivity	contributes	to	the	
production	of	concepts	(nodes)	while	the	descending	part	handles	the	partial	order	
in	the	resulting	lattice.	Function	put(n')	returns	the	node	of	the	input	lattice	that	
corresponds	to	node	n'	in	the	output	lattice.	Function	get(n)	conducts	the	opposite	
operation	by	returning	the	node	in	the	output	lattice	that	corresponds	to	node	n.	The	
function	parent_pruning	consists	to	check	itemset	inclusion	to	avoid	the	exploration	
of	useless	parent	nodes	in	the	lattice.

Algorithm 1: Projection
Input:.Node	n,	P:	a	set	of	attributes	
Output:.Node	n'
if	n	is	already	processed	then
. return	get(n)
Successors	←	∅		/*	keep	track	of	the	successors	of	a	given	node	*/
i1	←	intent(n)	∩	P
Parents	←	sort(Parents(n))	/*	in	a	decreasing	order	of	|intent(p)	∩	i1|	where	p	∈	Parents */
for.each	non	visited	parent	p	of	Parents do	
	 i2	←	intent(p)	∩	i1
. if	i2	≠	∅	and	i1	≠	i2	then
 Successors	←	Successors ∪	Projection(p, P)
					 else	if	i1	=	i2	then
									Projection(p, P)
Mark	n	as	a	processed	node
n'	←	(extent(n),	i2)
Link	n'	to	Successors

Return	n'

2�0 Missaoui, Jatteau, Boujenoui, & Naouali

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Table	3	provides	the	trace	of	the	projection	algorithm	applied	to	lattice	L	(depicted	
in Figure 1) and shows that the infimum of the output lattice is rapidly reached and
the	resulting	lattice	is	quickly	formed	using	heuristics	for	selecting	the	successors	
(parents)	to	explore.	
The following algorithm exploits the properties defined in the section Operations
on	Lattices	to	perform	the	assembly	of	two	lattices	L1	and	L2.	A	simplistic	way	to	
implement	such	operation	is	to	compare	each	node	in	L1	with	each	node	in	L2.	In	
order	to	rapidly	get	real	concepts,	each	one	of	the	two	lattices	is	explored	in	a	bot-
tom-up	way	following	a	linear	extension	of	the	lattice	order.	The	following	procedure	
presents a simplified description of the implemented algorithm where E	stores	the	
intersection	of	two	extents.	If	E	is	a	new	value,	then	it	corresponds	to	the	extent	of	
a	new	concept	c.	In	that	case,	concept	c	is	then	created	and	linked	to	its	immediate	
predecessors	(descendants).	More	details	can	be	found	in	Valtchev	et	al.	(2002a).

Algorithm.2:	Assembly

Input:	L1	=	〈G1, ≤L1〉,		L2	=	〈G2, ≤L2〉

Output:	L	=	〈G, ≤L〉

L ← ∅

Sort(G1) according to a linear extension of ≤L1;	

Sort(G2) according to a linear extension of ≤L2;	

for.each	ci	in	G1	do
		for.each	cj	in	G2	do
			E ← extent(ci) ∩ extent(cj)

Table 3. Trace of the projection of lattice L (Figure 1) on abcd

n i1 Successors Concept

1 abcd 5 no

5 abcd 7,10,12 yes

10 abc 15,17 yes

15 ab 19 yes

19 a NIL yes

17 ac 19 yes

7 acd 11 no

11 acd 14,17 yes

14 ad 19 yes

12 abd 13,15 yes

13 ad 14 no

Toward Integrating Data Warehousing with Data Mining Techniques 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

			if.E	does	not	exist	as	an	extent	of	a	newly	computed	concept	then
.....c ← (E, intent(ci) ∪ intent(cj))
 L ← L ∪ {c}
 Link c to	its	immediate	predecessors

return	L

Another	way	to	implement	the	assembly	operation	consists	to	start	with	L1	and	it-
eratively	conduct	as	many	assembly	operations	as	there	are	attributes	in	L2.
Among	the	questions	that	we	had	to	answer	while	exploring	the	projection	and	the	
assembly	operations,	we	enumerate	the	following:	

•	 Is	it	worthwhile	to	perform	these	operations	on	lattices	rather	than	recomputing	
lattices	from	scratch	based	on	the	projection	or	the	apposition	(i.e.,	horizontal	
concatenation)	of	contexts?	

• Are there other benefits of these operations on lattices?

To answer the first question, we have conducted an experimental study which
showed that computing a projection on a lattice is generally more efficient than the
lattice construction using the modified context. The gain increases significantly as
the	proportion	of	projection	attributes	augments.	Figure	4	illustrates	this	fact	for	a	
context	of	500	objects	and	50	attributes.	
Our	work	on	lattice	assembly	(Valtchev	et	al.,	2002a)	shows	that	this	operation	has	
interesting empirical and theoretical performances. Furthermore, the other benefit
of	the	two	operations	lies	in	the	fact	that	they	can	be	used	to	construct	a	lattice	in	a	
distributed	or	parallel	environment,	or	construct	a	nested	structure	of	the	lattice,	called	
nested line diagram	(see	Visualization	Mechanisms	section	for	more	details).	

Figure 4. Projection on lattice vs. projection on context

2�2 Missaoui, Jatteau, Boujenoui, & Naouali

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Visualization Mechanisms

In	large	and	complex	DM	output,	it	is	crucial	to	provide	mechanisms	to	(1)	select	
the	mining	space	(i.e.,	input	data),	(2)	limit	the	DM	output	to	user’s	needs	and	per-
spectives,	and	(3)	browse	the	DM	results.		
Our	work	about	data	visualization	concerns	mainly	the	implementation	of	projection	
and	assembly	of	lattices	to	produce	nested	line	diagrams	and	see	the	data	mining	
output	(drawn	either	from	bidimensional	or	multidimensional	data)	under	different	
perspectives.
Nested	line	diagrams	(Ganter	&	Wille,	1999)	are	visualization	aids	which	allow	
the	construction	of	a	lattice	L	as	an	assembly	of	two	or	many	lattices	L1,...,Ln by	
combining	the	respective	Hasse	diagrams	of	the	n lattices	Li	into	a	unique	com-
plex	structure.	However,	neither	the	nodes	of	L	nor	their	partial	order	are	directly	
represented.	Instead,	the	information	about	them	is	spread	over	the	various	levels	
of	nesting.	Figure	5	presents	the	nested	line	diagram	(NLD)	of	the	product	lattice	
LInternal,	Govern=LInternal×LGovern.	As	can	be	seen,	the	line	diagram	of	the	lattice	Internal	
is	used	as	an	outer	frame	in	which	the	diagram	of	Govern	is	embedded.	The	outer	
lattice	shows	the	distribution	of	companies	according	to	the	dimension	Internal.	
Each	one	of	the	three	external	nodes	at	the	intermediate	level	focuses	on	a	particular	
value	of	Internal.	For	example	(see	the	node	in	the	middle),	110	enterprises	have	

Figure 5. Nested-line diagram from a subset of attributes in Table 1a

	

Toward Integrating Data Warehousing with Data Mining Techniques 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Internal =	2	(i.e.,	the	top	management	represents	a	proportion	of	10	to	25%	of	the	
board).	A	careful	look	at	the	inner	lattice	of	the	external	LHS	node	allows	to	state	
that	when	Internal =	3,	good	quality	of	governance	(i.e.,	Govern	=	3)	tends	to	be	
less	frequent	than	in	the	case	when	Internal	is	equal	to	1	or	2.	In	particular,	a	com-
parison	between	the	inner	diagrams	related	to	the	extreme	nodes	(LHS	for	Internal	
=	3	and	RHS	for	Internal	=	1)	of	the	outer	structure	shows	clearly	that	the	quality	
of	governance	is	overall	higher	for	Internal =	1	than	for	Internal =	3	(e.g.,	24	en-
terprises	have	Govern =	3	when	Internal =	1	against	7	when	Internal =	3).	
The	NLD	in	Figure	5	can	be	perceived	as	a	rollup	on	the	fact	table	depicted	by	
Table	1a	when	the	dimension	Duality	is	ignored.	However,	the	structure	embeds	
multiple	rollups	since	one	can	see	at	 the	same	time	aggregate	values	for	one	of	
the	two	dimensions	or	for	a	combination	of	the	two	dimensions.	This	fact	is	much	
more	emphasized	when	the	number	of	nesting	levels	is	large.	Therefore,	the	NLD	
structure	offers	 a	 richer	 environment	 than	OLAP	operations	 for	 the	 exploration	
and	navigation	in	aggregated	data.	To	illustrate	this	fact,	one	can	see	that	the	inner	
diagram	in	the	supremum	of	the	outer	lattice	(node	#	1)	is	a	projection	(rollup)	of	
the	lattice	(produced	from	the	fact	table	in	Table	1(a))	on	Govern	while	the	imme-
diate predecessors of that external node (i.e., nodes #2, #3, and #4) reflect a rollup
limited	to	Internal.	To	get	a	rollup	on	the	combination	of	Internal	and	Govern,	we	
need	to	look	at	the	inner	lattices	within	outer	nodes.	For	example,	when	Internal	
=	1	(see	node	#4),	51	enterprises	have	either	Govern	=	2	(27	cases)	or	Govern	=	3	
(24	cases),	but	no	one	of	them	has	a	bad	quality	of	governance	(i.e.,	Govern	=	1)	
like	in	the	case	when	Internal	takes	a	value	equal	to	2	or	3	(internal	structure	in	
nodes	#3	and	#2)	.
We	have	developed	a	set	of	tools	for	information	and	knowledge	visualization:	(1)	
the	tool	called	CubeViz	helps	highlight	the	salient	cells	in	a	data	cube	as	well	as	
associations	among	cells,	and	(2)	the	module	NLD	allows	a	nested	representation	
of	lattices.	The	latter	is	built	upon	our	DM	platform	called	Galicia	(2004).

Conclusion

In	this	chapter,	we	have	presented	our	solution	towards	a	mutual	collaboration	be-
tween data mining and data warehousing technologies with flexibility/interactivity
and efficiency objectives in mind. It exploits the theoretical basis and attractive
features	of	formal	concept	analysis	and	concept	lattices	to	propose	two	techniques:	
(1) one which exploits lattice based mining algorithms for efficiently generating
frequent	closed	itemsets	from	multidimensional	data	to	further	extract	association	
rules and clusters, and (2) the second technique which defines new operators simi-
lar	in	spirit	to	OLAP	techniques	to	allow	“data	mining	on	demand”	by	relying	on	
operations	like	projection,	selection,	and	assembly	on	concept	lattices.

2�4 Missaoui, Jatteau, Boujenoui, & Naouali

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Our	current	work	covers	also	statistical	modeling	in	data	warehouses	in	order	to	
discover	useful	patterns	in	data	(e.g.,	outliers),	discard	irrelevant	dimensions	and	
dimension	members,	and	hide	irrelevant	cube	cells.	In	particular,	we	are	exploring	
the	potential	of	log-linear	modeling	for	data	summarization	and	prediction	of	multi-
dimensional data. Among the observed barriers, we note the difficulty to efficiently
choose a parsimonious model (i.e., a reduced model that fits the data) from a pos-
sibly	very	large	set	of	candidate	models,	and	the	applicability	of	log-linear	models	
to	high-dimension	cubes.

Acknowledgments

We	would	like	to	thank	the	Natural	Sciences	and	Engineering	Research	Council	
of	Canada	(NSERC)	and	Le fonds québécois de la recherche sur la nature et les
technologies (FQRNT) for their financial support.

References

Agrawal,	R.,	&	Srikant,	R.	(1994).	Fast	algorithms	for	mining	association	rules.	
Proceedings of the 20th International Conference on Very Large Data Bases,
Santiago	de	Chile (pp.	487-499).	Morgan	Kaufmann.

Babcock,	B.,	Chaudhuri,	S.,	&	Das,	G.	(2003).	Dynamic sample selection for ap-
proximate query processing.	In	Proceedings of the 2003 ACM SIGMOD Inter-
national Conference on Management of Data, San	Diego,	CA	(pp.	539-550).	
ACM	Press.

Barbara,	D.,	&	Wu,	X.	(2001).	Loglinear-based quasi cubes.	Journal of Intelligent
Information Systems, 16(3),	255-276.

Ben	Messaoud,	R.,	Boussaïd,	O.,	&	Rabaséda,	S.	(2004).	A	new	OLAP	aggregation	
based	on	the	AHC	technique.	In	Proceedings of the 7th ACM International
Workshop on Data Warehousing and OLAP, New	York	(pp.	65-72).	Washing-
ton,	DC:	ACM	Press.

Chaudhuri,	S.,	&	Dayal,	U.	(1997).	An	overview	of	data	warehousing	and	OLAP	
technology.	SIGMOD Record, 26(1),	65-74.

Dong,	G.,	Han,	J.,	Joyce,	M.	W.,	Pei,	J.,	&	Wang,	K.	(2001).	Mining	multi-dimen-
sional	constrained	gradients	in	data	cubes.	In	Proceedings of the 27th Interna-
tional Conference on Very Large Data Bases	(pp.	321-330).	San	Francisco:	
Morgan	Kaufmann	Publishers.

Toward Integrating Data Warehousing with Data Mining Techniques 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Galicia.	(2004).	Galois Lattice Interactive Constructor. SourceForge project.	Re-
trieved	June	14,	2006,	from	http://sourceforge.net/projects/galicia/

Ganter,	B.,	&	Wille,	R.	(1999).	Formal concept analysis: Mathematical foundations	
(C.	Franzke,	Trans.).	New	York:	Springer-Verlag.

Goil,	S.,	&	Choudhary,	A.	N.	(2001).	PARSIMONY:	An	infrastructure	for	parallel	
multidimensional	analysis	and	data	mining.	Journal of Parallel and Distrib-
uted Computing, 61(3),	285-321.

Han,	 J.	 (1998).	Towards	on-line	analytical	mining	 in	 large	databases.	SIGMOD
Record, 27(1),	97-107.

Han,	J.,	&	Kamber,	M.	(2000).	Data mining: Concepts and techniques.	San	Fran-
cisco:	Morgan	Kaufmann	Publishers	Inc.

Imielinski,	T.,	Khachiyan,	L.,	&	Abdulghani,	A.	(2002).	Cubegrades:	Generalizing	
association	rules.	Data Mining and Knowledge Discovery, 6(3),	219-257.

Imielinski,	T.,	&	Mannila,	H.	(1996).	A	database	perspective	on	knowledge	discov-
ery.	Communications of the ACM, 39(11),	58-64.	

Knorr,	E.	M.,	Ng,	R.	T.,	&	Tucakov,	V.	(2000).	Distance-based	outliers:	Algorithms	
and	applications.	The VLDB Journal, 8(3-4),	237-253.

Lakshmanan,	S.,	Pei,	J.,	&	Zhao,	Y.	(2002).	Quotient	cube:	How	to	summarize	the	
semantics	of	a	data	cube.	In	Proceedings of the 28th International Conference
on Very Large Databases, Hong	Kong	(pp.	778-789).	Morgan	Kaufmann.

Lu,	H.,	Feng,	L.,	&	Han,	J.	(2000).	Beyond	intratransaction	association	analysis:	
Mining	multidimensional	intertransaction	association	rules.	ACM Transactions
on Information Systems, 18(4),	423-454.

Naouali,	S.,	&	Missaoui,	R.	(2005).	Flexible	query	answering	in	data	cubes.	In	Pro-
ceedings of the 7th International Conference on Data Warehousing and Knowl-
edge Discovery	(pp.	221-232),	Copenhagen,	Denmark.	Springer-Verlag.

Pasquier,	N.,	Taouil,	R.,	Bastide,	Y.,	Stumme,	G.,	&	Lakhal,	L.	(2005).	Generating	
a	condensed	representation	for	association	rules.	Journal of Intelligent Infor-
mation Systems, 24(1),	29-60.

Pfaltz, J. L., & Taylor, C. M. (2002). Scientific discovery through iterative transfor-
mations	of	concept	lattices.	In	Proceedings of the 1st International Workshop on
Discrete Mathematics and Data Mining, Arlington,	VA	(pp.	65-74).	SIAM.	

Pinto,	H.,	Han,	J.	Pei,	J.,	Wang,	K.,	Chen,	Q.,	&	Dayal,	U.	(2001).	Multi-dimen-
sional	sequential	pattern	mining.	Proceedings of the 10th ACM International
Conference on Information and Knowledge Manaagement, Atlanta,	GA	(pp.	
81-88).	ACM	Press.

Sarawagi,	S.,	Agrawal,	R.,	&	Megiddo,	N.	(1998).	Discovery-driven	exploration	
of	OLAP	data	cubes.	In	Proceedings of the 6th International Conference on
Extending Database Technology	(pp.	168-182).	London:	Springer-Verlag.

2�6 Missaoui, Jatteau, Boujenoui, & Naouali

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Shanmugasundaram,	J.,	Fayyad,	U.,	&	Bradley,	P.	S.	(1999).	Compressed	data	cubes	
for	olap	aggregate	query	approximation	on	continuous	dimensions.	In	Pro-
ceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining	(pp.	223-232).	ACM	Press.

Valtchev,	P.,	Missaoui,	R.,	Godin,	R.,	&	Meridji,	M.	(2002).	Generating	frequent	
itemsets	incrementally:	Two	novel	approaches	based	on	Galois	lattice	theory.	
Journal of Experimental and Theoretical Artificial Intelligence, 14(2-3),	115-
142.

Valtchev,	P.,	Missaoui,	R.,	&	Lebrun,	P.	 (2002).	A	partition-based	approach	 to-
wards	constructing	Galois	(concept)	lattices.	Discrete Mathematics, 256(3),	
801-829.

Wang,	J.,	&	Karypis,	G.	(2004).	Bamboo: Accelerating closed itemset mining by
deeply pushing the length-decreasing support constraint.	In	SDM.

Xin,	D.,	Han,	J.,	Li,	X.,	&	Wah,	B.	W.	(2003).	Star-cubing: Computing iceberg
cubes by top-down and bottom-up integration.	In	VLDB.

Zaki, M. J., & Hsiao, C.-J. (2002). CHARM: An efficient algorithm for closed
itemset	mining.	In	R.	Grossman,	J.	Han,	V.	Kumar,	H.	Mannila,	&	R.	Mot-
wani	(Eds.),	Proceedings of the 2nd SIAM International Conference on Data
Mining (ICDM’02).

Endnote

1	 We	use	a	separator-free	form	for	sets.	For	example,	167	stands	for	{1,	6,	7},	
and	bcd	for	{b,	c,	d}.

Temporal Semistructured Data Models and Data Warehouses 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Chapter.XII

Temporal.
Semistructured.

Data.Models.and.
Data.Warehouses

Carlo Comb�
University of Verona, Italy

Barbara Oliboni
University of Verona, Italy

Abstract

This chapter describes a graph-based approach to represent information stored in
a data warehouse, by means of a temporal semistructured data model. We consider
issues related to the representation of semistructured data warehouses, and discuss
the set of constraints needed to manage in a correct way the warehouse time, that
is the time dimension considered storing data in the data warehouse itself. We use
a temporal semistructured data model because a data warehouse can contain data
coming from different and heterogeneous data sources. This means that data stored
in a data warehouse are semistructured in nature; that is, in different documents the
same information can be represented in different ways, and the document schemata
can be available or not. Moreover, information stored in a data warehouse is often
time varying, thus as for semistructured data, also in the data warehouse context,
it could be useful to consider time.

2�8 Combi & Oliboni

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Introduction

In recent years the database community has proposed flexible data models to repre-
sent semistructured information. Semistructured data have no absolute schema fixed
in	advance.	The	structure	may	be	irregular	or	incomplete	(Abiteboul,	1997).
In	 the	 literature	 there	 are	 a	 number	 of	 approaches	 in	which	 labeled	 graphs	 are	
used	to	represent	semistructured	data	(Comai,	Damiani,	Posenato,	&	Tanca,	1998;	
Damiani,	Oliboni,	Tanca,	&	Veronese,	1999;	Papakonstantinou,	Garcia-Molina,	&	
Widom,	1995).	These	models	organize	data	in	graphs	where	nodes	denote	objects	
or	values,	and	edges	represent	relationships	between	them.	
In	the	semistructured	data	context,	the	eXtensible	Markup	Language	(XML)	(World	
Wide	Web	Consortium,	1998)	is	spreading	out	as	a	standard	for	representing,	ex-
changing,	 and	 publishing	 semistructured	 information	 (Abiteboul,	 Buneman,	 &	
Suciu,	2000),	making	information	“self-describing,”	that	is	it	is	possible	there	is	
no	separate	description	of	the	type	or	structure	of	data.
A	data	warehouse	is	a	repository	of	data	coming	from	different	and	heterogeneous	
data	sources.	This	means	that	data	stored	in	a	data	warehouse	are	semistructured	
in	nature,	because	in	different	documents	the	same	information	can	be	represented	
in	different	ways,	and	moreover,	the	document	schemata	can	be	available	or	not.	
Furthermore,	data	warehouses	can	be	used	to	store	XML	documents	and	WWW	
data.	A	data	warehouse	storing	information	represented	by	means	of	XML	is	called	
XML data warehouse (Marian,	Abiteboul,	Cobena,	&	Mignet,	2001),	and	a	data	
warehouse	 collecting	 information	 from	 the	Web	 is	 called	 Web data warehouse	
(Bhowmick,	Madria,	Ng,	&	Lim,	1998).	In	the	literature	are	also	considered	XML
Web data warehouses	(Marian	et	al.,	2001;	Wang	&	Zaniolo,	2003).
A	dynamic	warehouse	for	XML	data	was	proposed	and	implemented	in	the	Xyleme	
project	(Xyleme,	2001).	The	prototype	was	then	turned	into	a	product	by	a	startup	
company	also	called	Xyleme.
Information	stored	into	a	data	warehouse	is	often	time	varying,	thus	as	for	semi-
structured	data,	also	in	the	data	warehouse	context,	it	could	be	useful	to	consider	
time.	The	classical	 time	dimensions,	considered	in	the	literature,	are	transaction	
time	and	valid	time.	The	transaction	time	is	the	time	when	a	fact	is	current	in	the	
database	and	may	be	retrieved,	while	the	valid	time	is	the	time	when	a	fact	is	true	
in	the	considered	domain	(Jensen,	Dyreson,	Bohlen,	et	al.,	1998).
In	the	semistructured	data	context,	graph-based	data	models	have	been	extended	to	
represent	the	time	dimension	of	information,	and	issues	related	to	the	representation	
of	transaction	and	valid	times	have	been	studied	(Chawathe,	Abiteboul,	&	Widom,	
1998;	Combi,	Oliboni,	&	Quintarelli	2004;	Oliboni,	Quintarelli,	&	Tanca,	2001).	In	
the	data	warehouse	context,	proposals	in	the	literature	focus	on	the	representation	

Temporal Semistructured Data Models and Data Warehouses 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

of successive versions of a document (Bębel, Eder, Koncilia, Morzy, & Wrembel,
2004;	Marian	et	al.,	2001).
In	this	chapter,	we	focus	on	the	representation	of	semistructured	warehouses,	and	
consider	issues	related	to	their	graph-based	representations.	In	particular,	we	use	a	
temporal	semistructured	data	model,	based	on	labeled	graphs,	to	represent	informa-
tion	stored	in	a	data	warehouse.	Moreover,	we	discuss	the	set	of	constraints	needed	to	
manage	in	a	correct	way	the	warehouse	time	and	the	operations	useful	to	handle	the	
considered	information.	Topics	related	to	the	querying,	the	refreshment,	and	main-
tenance	of	semistructured	data	warehouses	are	not	considered	in	this	chapter.
The structure of the chapter is as follows: in the Background section we briefly
describe	the	literature	related	to	semistructured	data,	temporal	semistructured	data,	
and	temporal	data	warehouses.	In	the	Representing	Semistructured	Temporal	Data	
Warehouses	section	we	consider	the	main	issues	related	to	the	management	of	tem-
poral	information	in	semistructured	data	warehouses,	describe	how	to	represent	a	
data warehouse by means of a temporal graph-based data model, and define the set
of	constraint	needed	to	manage	time	in	the	warehouse	context.	In	the	Future	Trends	
section	we	describe	the	topics	that	are	relevant	in	the	semistructured	data	warehouse	
context	and	sketch	possible	lines	for	future	works,	while	in	the	Conclusion	section	
we	summarize	the	chapter	content.

Background

Semistructured.Data

Semistructured	data	have	irregular	structure,	and	rapidly	evolving	or	missing	schema	
(Abiteboul,	1997).	The	classical	example	of	semistructured	data	is	related	to	data	
stored	on	the	World	Wide	Web:	at	a	typical	Web	site,	data	are	varied	and	irregular,	
and	the	overall	structure	of	the	site	changes	often.	Web	data	are	integrated	from	
multiple,	 heterogeneous	 data	 sources,	 where	 discrepancies	 among	 various	 data	
representations	are	likely.	
In the semistructured data context, the database community has investigated flex-
ible	data	models	to	represent	in	a	uniform	way	this	kind	of	information.	The	results	
of	this	research	are	a	number	of	approaches	in	which	labeled	graphs	are	used	to	
represent	semistructured	data.	These	models	organize	data	in	graphs	where	nodes	
denote	objects	or	values,	and	edges	represent	relationships	between	them.
In this section, we briefly describe some semistructured data models based on labeled
graphs	(Damiani	&	Tanca,	1997;	Papakonstantinou	et	al.,	1995),	and	the	eXtensible	
Markup	Language	(XML)	(World	Wide	Web	Consortium,	1998)	which	is	spread-

280 Combi & Oliboni

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

ing	out	as	a	standard	for	representing,	exchanging,	and	publishing	semistructured	
information	(Abiteboul	et	al.,	2000).
In	Papakonstantinou	et	al.	(1995),	the	authors	propose	the	object	exchange	model	
(OEM)	which	is	a	graph-structured	data	model	where	the	basic	idea	is	that	each	
object	has	a	label	that	describes	its	meaning.	
An	OEM	label	is	a	tuple	(label;type;value;object-ID) where	label	denotes	the	kind	of	the	
object,	type	is	a	data	type	(atomic,	composed,	or	reference),	value	denotes	the	actual	
value	of	the	object,	and	object-ID represents a unique variable-length identifier for
the	object.	The	OEM	label	is	used	to	extract	information	about	objects	that	repre-
sent	the	underlying	data.	The	OEM	model	represents	semistructured	data	by	means	
of	graphs	where	nodes	denote	objects	or	values	and	edges	represent	relationships	
between	objects;	 in	particular	an	OEM	graph	 is	a	directed	 labeled	graph	where	
the	edge	labels	describe	the	pointed	nodes.	OEM	does	not	actually	represent	the	
semantics	of	relationships	between	objects;	that	is,	if	an	object	pointed	by	an	edge	
labeled	as	“Person”	is	connected	by	means	of	an	edge	labeled	as	“City”	to	another	
object,	OEM	allows	one	to	represent	only	the	fact	that	the	object	City	is	contained	
in	the	object	Person,	but	does	not	express	in	which	relationship	they	are.	Thus,	in	
this	example	it	is	impossible	to	understand	if	the	person	lives	in	the	city	or	if	the	
person	works	in	the	city.	OEM	uses	edge	labels	to	describe	the	pointed	nodes,	and	
thus	edges	represent	only	the	containment	relationship.
In	Damiani	and	Tanca	(1997),	the	authors	propose	a	graph-oriented	description	and	
query language specifically designed for the needs of Web sites (WG-Log). WG-
Log	allows	one	to	represent	classical	conceptual	objects	and	standard	hypermedia	
design	notations,	allowing	the	expression	of	model	entities	and	relationships	as	well	
as	navigational	concepts.	The	WG-Log	data	model	uses	directed	labeled	graphs	to	
represent	schemata,	instances,	and	queries.	In	WG-Log	graphs,	nodes	represent	ob-
jects,	and	edges	indicate	relationships	between	them.	In	particular,	in	WG-Log	two	
main node types are defined: simple and complex nodes. Simple nodes represent
simple	objects	(with	an	atomic,	perceivable	value	as	strings	and	numbers),	while	
complex	nodes	represent	abstract	objects	(whose	properties	are	described	by	means	
of	aggregates	of	simple	objects).	For	example,	a	person	is	represented	by	means	of	
a	complex	node	Person,	and	the	person’s	name	by	means	of	a	simple	node	Name	
with	a	value.	Moreover,	there	are	other	kinds	of	nodes	to	describe	indexes	and	entry	
points,	useful	for	the	representation	of	the	hypermedia	structure.	For	example,	the	
home	page	of	a	WWW	site	can	be	represented	by	means	of	an	entry	point.	Graph	
edges	can	indicate	both	logical	and	navigational	relationships.	A	logical	edge	has	a	
label	indicating	the	relationship	name.
The	eXtensible	Markup	Language	(XML)	(World	Wide	Web	Consortium,	1998)	
is	spreading	out	as	a	standard	for	representing,	exchanging,	and	publishing	semis-
tructured information by means of a simple and flexible text format derived from
the	Standard	Generalized	Markup	Language	(World	Wide	Web	Consortium,	1995).	

Temporal Semistructured Data Models and Data Warehouses 28�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

XML	is	a	markup	language	designed	to	describe	data	by	means	of	a	set	of	tags,	
which are not predefined. XML allows the author of the document to define the
author’s	own	tags	and	document	structure.
XML	documents	can	be	easily	represented	as	trees	or	graphs.	For	example	the	XPath	
Data	Model	(World	Wide	Web	Consortium,	2005a)	allows	the	representation	of	an	
XML	document	as	a	tree.	XPath	uses	path	expressions	to	address	the	nodes	in	the	
XML	trees.

Temporal.Semistructured.Data

As	in	the	classical	context,	also	in	the	context	of	semistructured	data	it	is	interest-
ing	to	take	into	account	the	dynamic	aspects	of	data	to	represent	their	evolutions	
through	time	and	eventually	through	consecutive	updates.
In	this	section,	we	describe	the	different	approaches	proposed	in	the	literature	to	
represent	time	in	the	semistructured	data	context	(Chawathe	et	al.,	1998;	Combi	et	
al.,	2004;	Dyreson,	Böhlen,	&	Jensen,	1999;	Oliboni	et	al.,	2001;	Amagasa,	Yoshi-
kawa	&	Uemura,	2001).
In	Chawathe	et	al.	(1998),	 the	authors	propose	the	delta	object	exchange	model	
(DOEM),	a	model	based	on	the	object	exchange	model	(OEM)	(Papakonstantinou	
et	al.,	1995).	Change	operations	(i.e.,	node	insertion,	update	of	node	values,	addition	
and	removal	of	labeled	edges)	are	represented	in	DOEM	by	using	annotations	on	
the	nodes	and	edges	of	an	OEM	graph.	Intuitively,	annotations	are	the	representa-
tion	of	the	history	of	nodes	and	edges.	To	implement	the	DOEM	model	the	authors	
use	 a	method	 that	 encodes	DOEM	databases	 as	OEM	databases.	This	 proposal	
takes	into	account	the	transaction	time	dimension	of	a	graph-based	representation	
of	semistructured	data.	As	OEM	graphs,	DOEM	graphs	do	not	consider	labeled	
relationships	between	two	objects.
In	Oliboni	et	al.	(2001),	the	authors	propose	the	temporal	graphical	model	(TGM),	
which	is	a	graphical	model	for	representing	semistructured	data	dynamics.	A	TGM	
graph	is	a	directed	labeled	graph	composed	by	two	kinds	of	nodes	(complex	and	
simple	nodes),	and	two	kinds	of	edges	(relational	and	temporal	edges).	Complex	
nodes	are	related	to	other	complex	nodes,	and	have	a	number	of	attributes	(atomic	
nodes),	whereas	atomic	nodes	represent	objects	with	an	atomic	value	(i.e.,	a	string,	
an	integer,	but	also	a	text,	an	image,	a	sound)	and	do	not	exist	independently	of	their	
parent	complex	node.	This	model	represents	the	valid	time	dimension.
In	Amagasa	et	al.	(2001),	the	authors	propose	a	logical	data	model	for	representing	
histories	of	XML	documents.	The	proposed	model	is	an	extension	of	the	XPath	data	
model	(World	Wide	Web	Consortium,	2005a),	with	a	label	on	edges	expressing	valid	
time.	The	result	of	a	general	XPath	expression	may	be	a	selection	of	nodes	from	the	
input	documents,	or	an	atomic	value,	or	more	generally,	any	sequence	allowed	by	

282 Combi & Oliboni

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

the	data	model.	In	the	proposed	extension,	nodes	can	be	selected	also	with	respect	
to	their	valid	time.
In	Dyreson	 et	 al.	 (1999),	 the	 authors	 propose	 a	 graph-based	model	which	 uses	
labeled graphs to represent semistructured databases. In the defined graphs, each
edge	label	is	composed	by	a	set	of	descriptive	properties	(e.g.,	name,	transaction	
time,	valid	time,	security	properties	of	relationships):	a	property	can	be	present	in	
an	edge	and	missing	in	another	one.	This	proposal	is	very	general	and	extensible:	
any property may be used and added to adapt the model to a specific context. In
particular,	 the	 model	 allows	 one	 to	 represent	 temporal	 aspects	 and	 to	 consider	
only	a	temporal	dimension	or	multiple	temporal	dimensions:	to	this	regard,	some	
examples	of	constraints	which	need	to	be	suitably	managed	to	correctly	support	
semantics	of	 the	 time-related	properties	are	provided,	both	for	querying	and	for	
manipulating	graphs.	
In	Combi	et	al.	(2004)	the	authors	propose	the	Graphical	sEmistructured	teMporal	
data	model	(GEM),	which	is	based	on	labeled	graphs	and	allows	one	to	represent	
in	a	uniform	way	semistructured	data	and	their	temporal	aspects.	In	particular,	they	
focus	on	transaction	time.	The	GEM	data	model	is	based	on	rooted,	connected,	di-
rected,	labeled	graphs.	A	GEM	graph	is	composed	by	two	kinds	of	nodes,	complex	
and	simple	nodes,	which	are	graphically	represented	in	different	ways.	Complex	
nodes	are	depicted	as	rectangles	and	represent	abstract	entities,	while	simple	nodes	
are	depicted	as	ovals	and	represent	primitive	values.	The	transaction	time	of	nodes	
and edges is represented by means of an interval. In this work, the authors define the
set	of	constraints	needed	to	manage	in	a	correct	way	the	transaction	time	dimension,	
and	moreover	describe	the	operations	used	to	modify	a	GEM	graph.
The	GEM	data	model	 is	general	enough	 to	represent	both	 transaction	and	valid	
times.	
In	Figure	1,	a	GEM	graph	managing	valid	 time	 is	 represented.	 In	 this	example	
information	about	a	group	of	restaurants	is	represented.	The	group	of	restaurants	
is	represented	as	a	complex	node	having	label	composed	by	the	name	Group	and	
the	valid	time	interval	[01/05/05,now].	The	name	of	the	group	(“Red Horse”)	is	
represented	by	means	of	a	simple	node	related	to	the	complex	node	Group.	This	
simple	node	has	the	label	composed	by	the	name Name and	the	valid	time	inter-
val	[01/05/05,now]. The	node	Group	is	the	root	of	the	graph,	and	is	connected	to	
its	property	by	means	of	the	edge	with	name	GroupName	and	valid	time	interval	
[01/05/05,now].	The	valid	time	interval	[01/05/05,now]	represents	the	fact	that	the	
group	of	restaurants	is	valid	from	June	1,	2005	until	now.	
Information	about	restaurants,	addresses,	and	menu	are	represented	respectively	by	
means	of	the	complex	nodes	Restaurant,	Address, and	Menu.	Their	properties	are	
represented	as	simple	nodes	such	as	Name,	Position,	Price,	Street,	and	City.
Data	in	Figure	1	are	semistructured:	the	same	information,	such	as	the	address	of	the	
restaurant,	is	represented	in	different	ways,	that	is	as	a	simple	node	for	“Big	Home,”	

Temporal Semistructured Data Models and Data Warehouses 28�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

and	as	a	complex	node	for	“The	Beach.”	The	GEM	data	model	allows	the	represen-
tation	of	data	evolution,	such	as	the	increasing	of	a	price.	For	example,	in	Figure	1,	
the	price	of	the	“Summer”	menu	increased	from	$25	to	$30	on	June	15,	2005.	This	
evolution	is	represented,	in	a	GEM	graph	managing	valid	time,	by	means	of	a	new	
simple	node	with	the	same	name	(“Price”),	with	the	new	value	(“$30”)	and	valid	
time	interval	starting	from	“15/06/05”	and	ending	“now.”	The	special	value	“now”	

Figure 1. A GEM graph related to restaurant information

<Group,[01/05/05,now]>

<Restaurant,[01/06/05,now]> <Restaurant,[01/07/05,now]>

<Address,[01/07/05,now]><Menu,[01/06/05,now]>
<Position,[01/06/05,now]>

<Name,[01/05/05,now]>

<Name,[01/06/05,now]>

<Price,[01/06/05,14/06/05]>

<Price,[15/06/05,now]>

<Street,[01/07/05,now]>

<City,[01/07/05,now]>

<Composition,[01/06/05,now]> <Composition,[01/07/05,now]>

<RestPosition,[01/06/05,now]>

<RestMenu,[01/06/05,now]>

<RestMenu,[10/07/05,now]>

<RestAddress,[01/0705,now]>

<MenuName,[01/06/05,now]>

<MenuPrice,[01/06/05,14/06/05]>

<MenuPrice,[15/06/05,now]>

<RestStreet,[01/0705,now]>

<RestCity,[01/0705,now]>

Red	Horse

Big	Street,	15	-	New	York

Summer

$	25

$	30

New	York

Small	Street,	20

<RestName,[01/06/05,now]>

Big	Home

<RestName,[01/07/05,now]>

The	Beach

<InfoName,[01/06/05,now]> <InfoName,[01/07/05,now]>

<GroupName,
[01/05/05,now]>

284 Combi & Oliboni

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

means	that	the	considered	node	(edge)	is	currently	valid	(and	will	remain	valid	until	
a	suitable	update	happens).	The	old	price	is	represented	in	the	GEM	graph,	but	its	
valid	time	interval	starts	from	“01/06/05”	and	ends	“14/06/05.”

Temporal.Data.Warehouses

In	the	context	of	data	warehouses	it	 is	very	important	 to	represent	and	consider	
time.	Representing	time	in	data	warehouses	means	to	allow	one	to	compare	data	
in	different	periods,	that	is,	to	consider	the	data	evolution.	The	time	dimension	can	
be	related	either	to	the	validity	of	information	(valid	time),	or	to	the	presence	of	
information	in	the	warehouse	(transaction	time).	Moreover,	the	time	dimension	can	
be	related	to	the	evolution	of	data	with	respect	to	the	time.	In	this	case	it	is	possible	
to	store,	in	the	data	warehouse,	successive	versions	of	information.
In	 this	section,	we	describe	different	approaches	 to	consider	and	represent	 tem-
poral	information	in	a	data	warehouse	(Eder	&	Koncilia,	2001;	Eder,	Koncilia	&	
Morzy,	2001).	Moreover,	we	focus	on	the	representation	of	successive	versions	of	
a document (Bębel et al., 2004; Marian et al., 2001; Wang & Zaniolo, 2003; Wang,
Zaniolo,	Zhou,	&	Moon,	2005).
In	Eder	and	Koncilia	(2001),	the	authors	propose	an	approach	for	representing	changes	
in	data	dimensions	of	multidimensional	data	warehouses,	by	introducing	temporal	
extension,	structure	versioning,	and	transformation	functions.	The	proposed	model	
is	an	extension	of	the	multidimensional	data	model	(Li	&	Wang,	1996;	Vassiliadis	
&	Sellis,	1999),	and	allows	one	to	represent	the	valid	time	dimension	by	means	of	
the	time	stamping	of	data.	This	approach	considers	the	structure version,	which	is	
a	view	on	a	temporal	data	warehouse	valid	for	a	given	time	interval.	The	proposed	
system	is	able	to	represent	successive	versions	of	structures,	and	provides	transfor-
mation	functions	to	map	data	from	a	structure	version	to	a	different	one.
In	Eder	et	al.	(2001),	the	authors	propose	an	architecture	for	temporal	data	warehouse	
systems	which	allows	the	registration	of	temporal	versions	of	dimension	data,	and	
the	transfer	of	data	between	different	temporal	versions.	In	this	work,	the	authors	
extend the model presented in Eder and Koncilia (2001) to represent also modifica-
tions	at	the	schema	level,	such	as	the	insertion	of	a	new	dimension	level	(e.g.,	the	
new	dimension	level	quarter	inserted	between	month	and	year).	
In	Marian	et	al.	(2001),	the	authors	present	a	change-centric	method	for	managing	
versions	in	Web	warehouses	of	XML	data.	These	warehouses	contain	sequences	
of	snapshots	of	XML	documents	coming	from	the	Web.	The	approach	is	change-
centric	because	the	proposal	focuses	on	changes	(deltas).	At	each	point	in	time,	the	
last	version	of	a	document	and	the	sequence	of	completed	deltas	(similar	to	logs	
of	database	systems)	are	stored.	In	this	work,	the	time	of	a	document	version	is	

Temporal Semistructured Data Models and Data Warehouses 28�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

the	time	at	which	the	system	acquired	this	version,	thus	this	proposal	considers	the	
transaction	time	dimension.	The	model	introduced	in	Marian	et	al.	(2001)	is	based	
on ordered trees, where all nodes have identifiers. The XML tree can be modified
by	means	of	basic	operations	such	as	delete, insert, move,	and	update,	after	 the	
checking	of	consistency	conditions.	
In	Wang	and	Zaniolo	(2003),	the	authors	propose	XML-based	techniques	for	man-
aging	a	multiversion	document	as	a	unit,	and	representing	successive	versions	by	
means	of	delta	changes.	In	the	XML	document	containing	the	successive	versions	
of	a	document,	each	element	has	two	attributes,	vstart	and	vend, which	represent	the	
valid	version	interval	of	the	element.	The	former	attribute	represents	the	moment	
at which the element is first added to the XML document (i.e., the initial version
in	which	the	element	is	valid),	while	the	latter	represents	the	moment	at	which	the	
element	is	removed	from	the	XML	document	(i.e.,	the	last	version	in	which	the	el-
ement	is	valid).	The	valid	version	interval	can	be	represented	by	means	of	version	
numbers	or	timestamps.	In	the	case	of	timestamps,	the	considered	time	dimension	
is	the	valid	time.
To	manage	in	a	correct	way	the	valid	time	dimension,	the	authors	impose	that	the	
version	interval	of	an	ancestor	node	always	contains	those	of	its	descendant	nodes.	
The	considered	change	operations	are	delete,	insert,	and	update.
In	Wang	et	al.	(2005),	the	authors	describe	an	approach	to	store	and	query	the	his-
tory	of	XML	evolving	document.	In	particular,	they	compute	the	difference	between	
the	successive	versions	of	a	document,	and	represent	the	history	of	the	document	
by	timestamping	and	temporally	grouping	the	deltas.	In	this	way,	a	multiversion	
document	is	managed	as	a	unit	and	its	successive	versions	are	represented	by	the	
delta	changes	between	versions.	This	approach	makes	it	possible	to	support	complex	
historical	queries	on	the	evolution	of	the	document	and	its	elements,	by	using	Xquery	
(World	Wide	Web	Consortium,	2005b),	the	standard	query	language	of	XML.
In Bębel et al. (2004), the authors propose a multiversion data warehouse that is
capable	of	handling	changes	in	the	schema	structure	as	well	as	simulating	alterna-
tive	business	scenarios	useful	to	predict	trends	by	means	of	the	what-if	analysis.	At	
this	aim,	the	authors	propose	two	different	kinds	of	versions:	real	versions,	which	
handle	changes	made	to	the	external	data	sources,	and	alternative	versions,	which	
handle	changes	made	by	a	user	for	the	purpose	of	applying	the	what-if	analysis.	
Several	alternative	versions	can	be	created	from	a	real	version.	Alternative	versions	
can	be	created	also	to	simulate	changes	in	the	structure	of	a	data	warehouse	schema.	
Such	a	version	is	used	for	analyzing	the	system	performances	and	the	optimization	
of	the	data	warehouse	structure.	The	time	dimension	considered	in	this	proposal	
is	the	valid	time,	which	is	represented	by	means	of	two	timestamps:	the	beginning	
valid	time	and	the	ending	valid	time.
	

286 Combi & Oliboni

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Representing.Semistructured.Temporal.
Data.Warehouses

Data	stored	in	a	warehouse	usually	come	from	general	heterogeneous	data	sources,	
and are semistructured in nature, thus a general and flexible data model to represent
information	stored	in	the	data	warehouse	is	needed.	Moreover,	data	warehouses	usu-
ally	are	used	as	a	repository	for	time	varying	information.	This	means	that,	temporal	
aspects	are	a	very	important	issue	in	this	context.
In	this	section,	we	consider	the	main	topics	related	to	the	management	of	time	in	
semistructured	data	warehouses.	In	particular,	we	describe	how	to	represent	a	data	
warehouse	by	means	of	a	graph-based	temporal	semistructured	data	model,	and	
propose	the	set	of	constraints	needed	to	manage	in	the	correct	way	the	considered	
time	dimension	in	the	warehouse	context.
In	Figure	2	a	GEM	graph	representing	a	portion	of	a	data	warehouse	is	reported.	
In	this	example	information	about	products	in	a	catalogue	are	stored.	In	particular,	
data	in	the	graph	represent	a	catalogue	composed	by	two	categories:	Clothes	and	
SportProduct.	The	complex	node	representing	the	catalogue	is	the	root	of	the	graph	
and	has	as	label	its	name	Catalogue	and	its	valid	time		[01/01/05,now]. The	valid	
interval	[01/01/05,now]	represents	the	fact	that	the	catalogue	is	valid	from	January	
1,	2005	until	now.	The	Clothes	and	SportProduct categories	are	also	represent	by	
means	of	complex	nodes	with	the	same	valid	time	intervals.
The	former	category	has	two	products	with	their	codes	and	prices,	while	the	latter	
one	is	empty.	In	particular,	the	products	included	in	the	Clothes category	are	repre-
sented	by	means	of	two	complex	nodes	with	label	Product and	valid	time	interval	
[01/01/05,now]. The first product has a code equal to “X1” and	a	price	equal	to	
“$10.”	Both	properties	are	represented	as	simple	nodes.	Each	simple	node	has	as	
label	the	name	(Code/Price),	and	the	valid	time	interval	([01/01/2005]),	and	the	
value	of	the	property	(X1/$10). The second product is structured as the first one,
and	represents	a	product	having	code	equal	to	“X2” and	a	price	equal	to	“$20.”
Each	complex	node	is	related	to	its	children	(complex	or	simple	nodes)	by	means	
of	edges	having	 label	composed	by	 the	name	of	 the	 relation	and	 the	valid	 time	
of	 the	relation	itself.	For	example	the	complex	node	Catalogue	 is	related	to	 the	
category	Clothes by	means	the	edge	with	name	Category	and	valid	time	interval	
[01/01/2005,now].
The	described	information	is	valid	since	January	1,	2005;	thus,	the	valid	time	in-
terval	of	the	objects	in	the	data	warehouse	is	[01/01/05,now].
On	March	1,	2005,	the	price	of	the	product	having	code	“X2”	changes	from	“$20”	
to	“$25.”	In	Figure	3	this	update	is	reported.	In	particular,	the	time	interval	of	the	
simple	node	Price	changes	from	[01/01/05,now]	to	[01/01/05, 28/02/05],	and	the	
same	for	the	time	interval	of	the	edge	ProdPrice	between	the	complex	node	Prod-

Temporal Semistructured Data Models and Data Warehouses 28�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

uct and	the	simple	node	Price.	The	interval	[01/01/05, 28/02/05] means	that	the	
considered	objects	were	valid	from	January	1,	2005	to	February	28,	2005.
The	new	price	is	represented	by	means	of	the	new	simple	node	Price	with	value	
“$25”	and	valid	time	interval	[01/03/05,now], related	to	the	complex	node	Product,	
representing	the	product	having	code	“X2,”	by	means	of	the	edge	ProdPrice with	
valid	time	interval	[01/03/05,now].	The	dashed	region	in	Figure	3	contains	the	old	
and	the	new	prices.

<Catalogue,[01/01/05,now]>

<Clothes,[01/01/05,now]> <SportProduct,[01/01/05,now]>

<Product,[01/01/05,now]>

<Product,[01/01/05,now]>

<Code,[01/01/05,now]>

<Code,[01/01/05,now]>

<Price,[01/01/05,now]>

<Price,[01/01/05,now]>

<Category,[01/01/05,now]> <Category,[01/01/05,now]>

<ProdList,[01/01/05,now]>

<ProdList,[01/01/05,now]>

<ProdCode,[01/01/05,now]>

<ProdCode,[01/01/05,now]>

<ProdPrice,[01/01/05,now]>

<ProdPrice,[01/01/05,now]>

$10

X1

$20

X2

Figure 2. A GEM graph representing a data warehouse

288 Combi & Oliboni

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

On	April	1,	2005	a	new	product	with	code	“Y1”	and	price	“$50”	is	added	to	the	cata-
logue	in	the	category	SporProduct.	The	GEM	graph	after	this	insertion	is	reported	
in	Figure	4.	The	dashed	region	contains	the	new	product	with	its	properties.	
In	particular,	the	new	product	is	represented	by	means	of	the	complex	node	Product
with	valid	time	interval	[01/04/05,now]. The	new	product	is	related	to	SportProd-
uct	by	means	of	the	edge	ProdList	having	the	same	time	interval.	Moreover,	the	
new	product	has	the	simple	node	Code	with	value	“Y1”	and	the	simple	node	Price	

Figure 3. Changing the price

<Catalogue,[01/01/05,now]>

<Clothes,[01/01/05,now]> <SportProduct,[01/01/05,now]>

<Product,[01/01/05,now]>

<Product,[01/01/05,now]>

<Code,[01/01/05,now]>

<Code,[01/01/05,now]>

<Price,[01/01/05,28/02/05]>

<Price,[01/01/05,now]>

<Category,[01/01/05,now]> <Category,[01/01/05,now]>

<ProdList,[01/01/05,now]>

<ProdList,[01/01/05,now]>

<ProdCode,[01/01/05,now]>

<ProdCode,[01/01/05,now]>

<ProdPrice,[01/01/05,28/02/05]>

<ProdPrice,[01/01/05,now]>

$10

X1

$20

X2

<Price,[01/03/05,now]>

<ProdPrice,[01/03/05,now]>

$25

Temporal Semistructured Data Models and Data Warehouses 28�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

with	value	“$50.”	These	simple	nodes	have	time	interval	[01/04/05,now], as	their	
ingoing	edges.
On	June	1,	2005	the	Clothes category	is	replaced	by	the	KidClothes	and	the	Adult-
Clothes	categories.	The	GEM	graph	after	this	replacement	is	reported	in	Figure	5.	
The	dashed	region	contains	the	new	categories.	
In	 particular,	 the	 time	 interval	 of	 the	 replaced	 Clothes	 category	 changes	 from	
[01/01/05,now]	to	[01/01/05, 31/05/05],	and	the	same	for	the	time	interval	of	the	
edge	Category	between	the	complex	node	Catalogue and	the	complex	node	Clothes.	
The	new	categories	are	represented	by	means	of	the	complex	nodes	KidClothes	and	
the	AdultClothes with	valid	time	interval	[01/06/05,now]. The	products	included	in	

Figure 4. Adding a new product

<Catalogue,[01/01/05,now]>

<Clothes,[01/01/05,now]> <SportProduct,[01/01/05,now]>

<Product,[01/01/05,now]>

<Product,[01/01/05,now]>

<Code,[01/01/05,now]>

<Code,[01/01/05,now]>

<Price,[01/01/05,28/02/05]>

<Price,[01/01/05,now]>

<Category,[01/01/05,now]> <Category,[01/01/05,now]>

<ProdList,[01/01/05,now]>

<ProdList,[01/01/05,now]>

<ProdCode,[01/01/05,now]>

<ProdCode,[01/01/05,now]>

<ProdPrice,[01/01/05,28/02/05]>

<ProdPrice,[01/01/05,now]>

$10

X1

$20

X2

<Price,[01/03/05,now]>

<ProdPrice,[01/03/05,now]>

$25

<Product,[01/04/05,now]>

<ProdList,[01/04/05,now]>

<Code,[01/04/05,now]>

<Price,[01/04/05,now]>

<ProdCode,[01/04/05,now]>

<ProdPrice,[01/04/05,now]>

$50

Y1

	

2�0 Combi & Oliboni

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

the	replaced	category	are	related	to	the	new	categories.	In	particular,	the	product	with	
code	“X1”	is	related	to	the	AdultClothes	category,	while	the	product	with	code	“X2”	
is	related	to	the	KidClothes	category.	This	means	that	the	valid	time	intervals	between	
the	Clothes category	and	the	considered	products	changes	from	[01/01/05,now]	to	
[01/01/05, 31/05/05],	and	new	edges	between	the	new	categories	and	the	products	
are	added.	The	new	edges	have	valid	time	interval	equal	to	[01/06/05,now].

Figure 5. Replacing a category

<Catalogue,[01/01/05,now]>

<Clothes,[01/01/05,31/05/05]> <SportProduct,[01/01/05,now]>

<Product,[01/01/05,now]>

<Product,[01/01/05,now]>

<Code,[01/01/05,now]>

<Code,[01/01/05,now]>

<Price,[01/01/05,28/02/05]>

<Price,[01/01/05,now]>

<Category,[01/01/05,31/05/05]> <Category,[01/01/05,now]>

<ProdList,[01/01/05,31/05/05]>

<ProdList,[01/01/05,31/05/05]>

<ProdCode,[01/01/05,now]>

<ProdCode,[01/01/05,now]>

<ProdPrice,[01/01/05,28/02/05]>

<ProdPrice,[01/01/05,now]>

$10

X1

$20

X2

<Price,[01/03/05,now]>

<ProdPrice,[01/03/05,now]>

$25

<Product,[01/04/05,now]>

<ProdList,[01/04/05,now]>

<Code,[01/04/05,now]>

<Price,[01/04/05,now]>

<ProdCode,[01/04/05,now]>

<ProdPrice,[01/04/05,now]>

$50

Y1

<KidClothes,[01/06/05,now]>

<Category,[01/06/05,now]>

<ProdList,[01/06/05,now]>

<AdultClothes,[01/06/05,now]>

<Category,[01/06/05,now]>

<ProdList,[01/06/05,now]>

Temporal Semistructured Data Models and Data Warehouses 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

On	July	1,	2005	 the	new	TShirt subcategory	 is	 inserted	under	 the	AdultClothes	
category.	The	GEM	graph	after	this	insertion	is	reported	in	Figure	6.	The	dashed	
region	contains	the	new	subcategory.	
As	in	the	previous	case,	the	new	subcategory	is	represented	by	means	of	a	new	complex	
node.	The	valid	time	interval	of	the	new	objects	(nodes/edges)	is	[01/07/05,now].

Figure 6. Adding a new subcategory

<Catalogue,[01/01/05,now]>

<Clothes,[01/01/05,31/05/05]> <SportProduct,[01/01/05,now]>

<Product,[01/01/05,now]>

<Product,[01/01/05,now]>

<Code,[01/01/05,now]>

<Code,[01/01/05,now]>

<Price,[01/01/05,28/02/05]>

<Price,[01/01/05,now]>

<Category,[01/01/05,31/05/05]>

<Category,[01/01/05,now]>

<ProdList,[01/01/05,31/05/05]>

<ProdList,[01/01/05,31/05/05]>

<ProdCode,[01/01/05,now]>

<ProdCode,[01/01/05,now]>

<ProdPrice,[01/01/05,28/02/05]>

<ProdPrice,[01/01/05,now]>

$10

X1

$20

X2

<Price,[01/03/05,now]>

<ProdPrice,[01/03/05,now]>

$25

<Product,[01/04/05,now]>

<ProdList,[01/04/05,now]>

<Code,[01/04/05,now]>

<Price,[01/04/05,now]>

<ProdCode,[01/04/05,now]>

<ProdPrice,[01/04/05,now]>

$50

Y1

<KidClothes,[01/06/05,now]>

<Category,[01/06/05,now]>

<ProdList,[01/06/05,now]>

<AdultClothes,[01/06/05,now]>

<Category,[01/06/05,now]>

<ProdList,[01/06/05,now]>

<TShirt,[01/07/05,now]>

<ProdList,[01/07/05,now]>

<Type,[01/07/05,now]>

2�2 Combi & Oliboni

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Representing Constraints by Means of Graphs

In	the	context	of	temporal	semistructured	data,	it	is	important	to	store	the	time	di-
mension	related	to	the	represented	information,	and	to	manage	in	a	correct	way	the	
considered time dimension. At this aim, a set of constraints must be defined. In this
work, we consider the valid time dimension, thus the defined constraints must be
able	to	guarantee	that	the	history	of	the	given	application	domain	is	consistent.	
In our proposal, it is possible to define two different categories of constraints for
valid	time	values	of	nodes	and	edges:	basic constraints must be satisfied by every
GEM	graph;	domain-dependent constraints	are	further	constraints,	which	can	be	
defined either for some specific nodes and edges or for the whole graph for a spe-
cific application domain. Domain-dependent constraints are strictly related to the
semantics	of	the	represented	objects	and	relationships.
As an example of basic constraints, at a specific time instant, between two nodes
it	cannot	exist	more	than	one	edge	representing	the	same	relation	(Combi	et	al.,	
2004).
The	graphical	formalism	used	in	the	following	constraints	has	been	described	in	
Damiani,	Oliboni,	Quintarelli,	and	Tanca	(2003)	and	Oliboni	(2003):	a	constraint	
is	composed	by	a	graph,	which	is	used	to	identify	the	portions	of	a	semistructured	
graph	where	the	constraint	has	to	be	applied,	and	a	set	of	formulae,	which	represent	
restrictions	imposed	on	those	subgraphs.
In	Figure	7	a	basic	constraint	is	reported.	In	particular	this	constraint	imposes	that	
the	time	interval	of	an	edge	between	a	complex	node	and	a	simple	node	must	be	
related	to	the	time	interval	of	the	complex	node.	Intuitively,	the	relation	between	a	
complex	node	and	a	simple	node	cannot	survive	the	complex	node;	thus,	the	time	
interval	of	the	edge	cannot	start	before	and	cannot	end	after	the	valid	time	of	the	
complex	node,	as	depicted	in	Figure	7.	This	is	due	to	the	fact	that	we	suppose	that	a	
complex	node	is	related	to	its	properties	(simple	nodes)	while	it	is	valid.	The	edge-
related	time	interval	[tjs,tje] starts	after	and	ends	before	the	time	interval	[ths,the]	of	
the	complex	node.
Figure 7(a) identifies the subgraphs where the constraint has to be applied, and the
set	of	formulae	representing	restrictions	imposed	on	those	subgraphs.	Figure	7(b)	
shows	an	example	of	intervals	satisfying	the	related	constraint.
Figure	8	shows	a	domain-dependent	constraint	on	the	relation	between	a	product	
and	its	categories.	In	particular	this	constraint	imposes	that	a	product	must	be	re-
lated	to	a	category;	that	is,	a	product	can	be	inserted	in	the	catalogue	only	if	it	is	
connected	to	at	least	one	category.
Figure 8(a) identifies the subgraphs where the constraint has to be applied, and the
formula	representing	restrictions	imposed	on	those	subgraphs.	Figure	8(b)	shows	
an	example	of	intervals	satisfying	the	related	constraint.

Temporal Semistructured Data Models and Data Warehouses 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Future.Trends

In	the	semistructured	data	warehouse	context,	the	following	issues	are	very	relevant	
and	interesting:

• Querying.of.semistructured.temporal.data.warehouse: Starting	from	a	graph-
based	representation	of	data	stored	in	a	data	warehouse,	it	could	be	useful	to	
study	a	temporal	semistructured	query	language	which	allows	one	to	impose	
temporal	clauses,	and	retrieve	information	without	knowing	in	advance	the	
structure	of	data.	In	the	semistructured	data	context,	query	languages	use	path	

Figure 7. A basic constraint

Figure 8. The constraint on the relation between a product and its categories

<	NodeNameh	,	[ths,	the]	>

<	EdgeNamej,	[tjs	,	tje]	>

ths the

tjs tje

tks tke

t

<	NodeNamek,	[tks	,	tke]	>

hetjet
hstjst

≤

∧≥

(a) (b)

<	NodeNameh	,	[ths,	the]	>

<	Product,	[tks	,	tke]	>

<	ProdListi	,	[tis	,	tie]	>

t�s t�e

t2s

t�s

t�e

t�e

tks tke

t

n1,...,i

]iet,is[t

)iemax(tket

)ismin(tkst

=

∅=

∧=

∧=

(a) (b)

2�4 Combi & Oliboni

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

expressions	to	describe	paths	on	the	graph.	In	this	context,	the	problems	are	
related to the definition of a simple and intuitive syntax allowing the user to
express complex temporal clauses, and to the definition of a query language
which is general and flexible enough to overcome difficulties coming from
the	semistructured	nature	of	data.

•	 Data aggregation and materialization: 	In	the	semistructured	data	context	
the	same	information	can	be	structured	in	different	ways,	thus	an	interesting	
point	 is	 the	study	of	suitable	techniques	to	aggregate	data	having	different	
structure,	choosing	a	common	graphical	representation.	Moreover,	the	result	
of	data	aggregation	can	be	seen	as	a	view	on	the	data	warehouse,	and	thus	it	
could	be	interesting	to	materialize	the	view	itself,	and	to	study	different	pos-
sibilities	to	store	data	in	the	view,	and	to	relate	them	to	the	original	informa-
tion.

•	 Representation.of.versions:	In	the	XML	data	warehouse	context,	it	could	
be	useful	to	maintain	the	successive	versions	of	an	XML	document	stored	in	
the	data	warehouse.	A	graphical	representation	of	versions	could	be	studied	
and	proposed.	The	graph-based	approach	for	representing	successive	versions	
would	represent	the	valid	time	of	data,	and	the	valid	(transaction)	time	of	the	
document	version.	In	this	case	the	problem	to	consider	is	related	to	the	best	
representation	of	different	versions	of	the	same	document.	This	means	to	choose	
to	represent	either	each	version	of	the	whole	document	or	only	the	part	of	the	
new	version	which	is	different	from	the	previous	one,	and	to	understand	how	
to	represent	the	time	dimension	related	to	the	version	time.

•	 Querying.successive.versions.of.documents.stored.in.a.data.warehouse:.
In	this	context	it	could	be	useful	to	query	by	considering	the	valid	time	of	
information,	or	the	valid	version	of	a	document,	or	a	particular	past	version,	
or	by	considering	both	time	dimensions.	In	this	case	the	problems	are	related	
to	the	study	of	suitable	temporal	clauses	allowing	the	user	to	express	tempo-
ral	conditions	on	different	time	dimensions,	that	is,	version	time	dimension,	
document	valid	time.	For	example,	the	user	could	be	interested	in	retrieving	
the	evolution	of	a	portion	of	the	document,	or	in	retrieving	valid	data.	In	the	
former	 case	 the	 user	would	 query	 the	 successive	 versions	 of	 a	 document,	
while	in	the	latter	case	the	user	would	query	the	present	(valid)	version	of	the	
document.	Moreover,	the	user	would	like	to	query	a	given	past	version	of	the	
document.	

Conclusion

In	this	chapter	we	described	a	graph-based	data	model	to	represent	semistructured	
data	warehouse	by	considering	the	valid	time	dimension.	This	approach	allows	one	

Temporal Semistructured Data Models and Data Warehouses 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

to	represent	data	stored	in	a	data	warehouse	by	means	of	labeled	graphs.	Each	object	
of	the	graph	(node/edge)	has	a	label	composed	by	the	description	of	the	object	itself	
(the	name),	and	the	valid	time	dimension	(the	valid	time	interval).	In	particular,	we	
considered	and	represented	the	valid	time	dimension,	and	gave	some	examples	of	the	
constraints	needed	to	manage	in	the	correct	way	the	considered	time	dimension.	

References

Abiteboul,	S.	(1997,	January	8-10).	Querying	semi-structured	data.	In	Proceedings
of the International Conference on Database Theory, Greece	(LNCS	1186,	
pp.	262-275).	

Abiteboul,	S.,	&	Buneman,	P.,	&	Suciu,	D.	(2000).	Data on the Web: From relations
to semistructured data and XML.	Morgan	Kaufman.

Amagasa,	T.,	Yoshikawa,	M.,	&	Uemura,	S.	(2001,	April	23-24).	Realizing	tem-
poral	XML	repositories	using	temporal	relational	databases.	In	Proceedings
of the Third International Symposium on Cooperative Database Systems and
Applications,	Beijing (pp.	63-68).

Bębel, B., Eder, J., Koncilia, C., Morzy, T., & Wrembel, R. (2004, March). Creation
and	management	of	versions	in	multiversion	data	warehouse.	In	Proceedings
of the 2004 ACM Symposium on Applied Computing, Cyprus (pp.	717-723).	
ACM	Press.	

Bhowmick,	S.	S.,	Madria,	S.	K.,	Ng,	W.	K.,	&	Lim,	E.	P.	(1998).	Web	warehous-
ing:	Design	and	issues.	In	Proceedings of International Workshop on Data
Warehousing and Data Mining (in conjunction with International Conference
on Conceptual Modelling, Singapore (LNCS	1552,	pp.	93-104).	

Chawathe,	S.	S.,	Abiteboul,	S.,	&	Widom,	J.	(1998).	Representing	and	querying	
changes	in	semistructured	data.	In	Proceedings of the Fourteenth International
Conference on Data Engineering (pp.	4-13). IEEE	Computer	Society.

Combi,	C.,	Damiani,	E.,	Posenoto,	R.,	&	Tanca,	L.	(1998,	May	13-15).	A	scheme-
based	approach	to	modeling	and	querying	WWW	data.	Proceedings of Flexible
Query Answering Systems (LNCS	1495,	pp.	110-125).

Combi,	C.,	Oliboni,	B.,	&	Quintarelli,	E.	(2004).	A	graph-based	data	model	to	rep-
resent	transaction	time	in	semistructured	data.	In	Proceedings of the Database
and Expert Systems Applications (LNCS	3180,	pp.	559-568).	

Damiani,	E.,	Oliboni,	B.,	Quintarelli,	E.,	&	Tanca,	L.	(2003).	Modeling	semistruc-
tured	data	by	using	graph-based	constraints.	In Proceedings of On The Move
to Meaningful Internet Systems 2003: OTM 2003 Workshops (LNCS	2889,	
pp.	20-21).	

2�6 Combi & Oliboni

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Damiani,	E.,	&	Tanca,	L.	(1997).	Semantic	approach	to	structuring	and	querying	
the	Web	sites.	In	Proceedings of 7th IFIP Working Conference on Database
Semantics (pp.	21-49).	Chapman	&	Hall.

Dyreson,	C.	E.,	Böhlen,	M.	H.,	&	Jensen,	C.	S.	(1999,	September	7-10).	Capturing	
and	querying	multiple	aspects	of	semistructured	data.	In	Proceedings of 25th
International Conference on Very Large Data Bases	(pp.	290-301). Morgan	
Kaufmann.

Eder,	 J.,	 &	 Koncilia,	 C.	 (2001).	 Changes	 of	 dimension	 data	 in	 temporal	 data	
warehouses.	In	Proceedings of the Third International Conference on Data
Warehousing and Knowledge Discovery,	Munich,	Germany (LNCS	2114,	pp.	
284-293). ACM.

Eder,	J.,	Koncilia,	C.,	&	Morzy,	T.	(2001).	A	model	for	a	temporal	data	warehouse.	
In	Proceedings of the OES-SEO Workshop	(pp.	48-54).

Jensen,	C.	S.,	Dyreson,	C.	E.,	Bohlen,	M.	H.,	et	al.	(1998).	The	consensus	glossary	
of	temporal	database	concepts	(February	1998	Version).	Temporal Databases:
Research and Practice, Rockville,	MD (LNCS 1399,	pp.	367-405).

Li,	C.,	&	Wang,	X.	(1996,	November	12-16).	A	data	model	for	supporting	on-line	
analytical	processing.	In	Proceedings of the Fifth International Conference on
Information and Knowledge Management (pp.	81-88). ACM	Press.

Marian,	 A.,	 Abiteboul,	 S.,	 Cobena,	 G.,	 &	 Mignet,	 L.	 (2001).	 Change-centric	
management	of	versions	in	an	XML	warehouse.	In	Proceedings of the 27th
International Conference on Very Large Data Bases (pp.	581-590). Morgan	
Kaufmann	Publishers	Inc.	

Oliboni,	B.	(2003). Blind queries and constraints: Representing flexibility and time
in semistructured data.	Doctoral	thesis,	Politecnico	di	Milano.

Oliboni,	B.,	Quintarelli,	E.,	&	Tanca,	L.	(2001,	June	14-16).	Temporal	aspects	of	
semistructured	data.	In	Proceedings of the Eighth International Symposium
on Temporal Representation and Reasoning (pp.	119-127).	IEEE	Computer	
Society.

Papakonstantinou,	Y.,	Garcia-Molina,	H.,	&	Widom,	J.	(1995).	Object	exchange	
across	heterogeneous	information	sources.	In	Proceedings of the Eleventh In-
ternational Conference on Data Engineering, Taipei,	Taiwan (pp.	251-260).	
IEEE	Computer	Society.

Vassiliadis,	P.,	&	Sellis,	T.	(1999).	A	survey	of	logical	models	for	OLAP	databases.	
SIGMOD Record 28, 64-69.

Wang,	F.,	&	Zaniolo,	C.	(2003).	Temporal	queries	in	XML	document	archives	and	
Web	warehouses.	In	Proceedings of the 10th International Symposium on Tem-
poral Representation and Reasoning and Fourth International Conference on
Temporal Logic (pp.	47-55).	IEEE	Computer	Society.

Temporal Semistructured Data Models and Data Warehouses 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Wang,	F.,	Zaniolo,	C.,	Zhou,	X.,	&	Moon,	H.	J.	(2005,	July	8-10).	Version	man-
agement	and	historical	queries	in	digital	libraries.	In Proceedings of the	12th
International Symposium on Temporal Representation and Reasoning	 (pp.	
207-209). IEEE	Computer	Society.

World	Wide	Web	Consortium.	(1995).	Overview	of	Standard	Generalized	Markup	
Language	 (SGML)	 resources.	 Retrieved	 June	 14,	 2006,	 from	 http://www.
w3.org/MarkUp/SGML/

World	Wide	Web	Consortium.	(1998).	Extensible Markup Language (XML) 1.0.	
Retrieved	June	14,	2006,	from	http://www.w3C.org/TR/REC-xml/

World	Wide	Web	Consortium.	(2005a).	XML Path Language (XPath) 2.0.	Retrieved	
June	14,	2006,	from	http://www.w3.org/TR/xpath20/

World	Wide	Web	Consortium.	(2005b).	XQuery 1.0: An XML query language.	Re-
trieved	June	14,	2006,	from	http://www.w3.org/TR/xquery/

Xyleme,	L.	(2001,	July	16-18).	Xyleme:	A	dynamic	warehouse	for	XML	data	of	the	
Web.	In	Proceedings of International Database Engineering & Applications
Symposium, IDEAS ’01 (pp.	3-7).	IEEE	Computer	Society.

2�8 Bédard, Rivest, & Proulx

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Chapter.XIII

Spatial.Online.
Analytical.Processing.

(SOLAP):
Concepts,.Architectures,.and.
Solutions.from.a.Geomatics.

Engineering.Perspective
Yvan Bédard

Laval University, Canada

Sonia Rivest
Laval University, Canada

Marie-Josée Proulx
Laval University, CAnada

Abstract

It is recognized that 80% of data have a spatial component (e.g., street address,
place name, geographic coordinates, map coordinates). Having the possibilities to
display data on maps, to compare maps of different phenomena or epochs, and to
combine maps with tables and statistical charts allows one to get more insights into
spatial datasets. Furthermore, performing fast spatio-temporal analysis, interactively

Spatial Online Analytical Processing (SOLAP) 2��

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

exploring the data by drilling on maps similarly to drilling on tables and charts,
and easily synchronizing such operations among these views is nowadays required
by more and more users. This can be done by combining geographical information
systems (GIS) with online analytical processing (OLAP), paving the way to “SO-
LAP” (spatial OLAP). The present chapter focuses on the spatial characteristics of
SOLAP from a geomatics engineering point of view: concepts, architectures, tools
and remaining challenges.

Introduction

It	is	recognized	that	up	to	80%	of	corporate	data	have	spatial	components	such	as	
street	addresses,	place	names,	geographic	coordinates,	or	map	coordinates.	This	fact,	
estimated	by	Franklin	(1992),	is	still	recognized	today	and	it	only	starts	to	show	
its	potential	for	the	masses	with	recent	commercial	advances	such	as	Google	Maps	
and	Google	Earth.	However,	the	true	power	of	maps	typically	remains	underused	
for	geographic	knowledge	discovery	unless	one	combines	a	geographic	information	
system	(GIS)	to	OLAP	technology.

The.Power.of.Maps

Map	data	are	the	raw	material	to	produce	the	geographic	information	that	leads	to	
knowledge	about	the	position,	extent,	and	distribution	of	phenomena	over	our	ter-
ritories.	Such	phenomena	are	counted	by	thousands	and	include	insect	territorial	
expansions,	environment-health	correlations,	land-use	evolution,	911	vehicle	track-
ing	and	watershed	analysis,	to	name	a	few.	Visualizing	geographic	phenomena	on	
maps	facilitates	the	extraction	of	insights	that	help	to	understand	these	phenomena.	
Such	insights	include	spatial	characteristics	(position,	shape,	size,	orientation,	etc.),	
spatial	relationships	(adjacency,	connectivity,	inclusion,	proximity,	exclusion,	over-
lay,	etc.),	and	spatial	distribution	(concentrated,	scattered,	grouped,	regular,	etc.).	
When	we	visualize	a	map	displaying	different	regions,	we	can	compare.	When	we	
visualize	different	maps	for	a	same	region,	we	can	discover	correlations	between	
phenomena.	When	we	visualize	the	map	of	a	region	for	different	epochs,	we	can	
see	the	evolution	of	the	phenomena.	When	we	use	maps,	we	often	get	a	better	un-
derstanding	of	the	structures	and	relationships	contained	within	spatial	datasets	than	
using	simple	tables	and	charts.	When	we	combine	maps	with	tables	and	statistical	
charts,	we	can	relate	these	to	make	new	discoveries.	Maps	are	natural	aids	to	the	
knowledge	discovery	process.	In	the	context	of	spatial	data	exploration,	maps	do	
more	than	just	make	the	data	visible,	they	are	active	instruments	to	support	the	end	
user	thinking	process.	Using	maps	for	geographic	knowledge	discovery	requires	less	

�00 Bédard, Rivest, & Proulx

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

abstraction efforts for users, which in turn, increases their efficiency. Maps show
information	that	would	not	be	visible	from	nonspatial	data	for	those	phenomena	
having a spatial distribution that does not correspond to predefined boundaries (e.g.,
administrative	boundaries).	Numerous	studies	 in	cognitive	sciences	have	shown	
the	superiority	of	images	over	numbers	and	words	to	stimulate	understanding	and	
memory	(Buzan	&	Buzan,	2003;	Fortin	&	Rousseau,	1989;	Standing,	1973),	lead-
ing to a more efficient knowledge discovery process (more alert brain, better visual
rhythm,	more	global	perception).	

Marrying.OLAP.with.GIS

Geographic	information	systems	(GIS)	are	very	good	at	achieving	the	goal	they	
have	been	developed	for,	that	is,	gathering,	storing,	manipulating	and	displaying	
spatial	data	(see	Longley,	Goodchild,	Maguire,	&	Rhind,	2001).	However,	they	are	
transaction-oriented	systems	and	do	not	address	summarized	information,	cross-
referenced	information,	interactive	exploration	of	data,	and	so	forth.	Furthermore,	
they	are	not	suited	for	temporal	data,	they	are	very	slow	to	aggregate	data,	they	
hardly	deal	with	multiple	levels	of	data	granularity,	and	their	user	interface	is	too	
complex	for	most	users.	Similarly	to	database	management	systems	(DBMS),	GIS	
alone cannot fill the “analysis gap” between spatial data and geographic knowledge
discovery.	When	one	has	to	interactively	dig	into	data,	roll	them	up,	and	cross-ref-
erence	them	to	get	the	information	of	interest,	today’s	GIS	interactivity	and	query	
interfaces	are	not	appropriate	in	terms	of	functions,	ease-of-use,	or	response	times.	
Today’s	GIS	do	not	support	Newell’s	cognitive	band	of	10	seconds	(Newell,	1990)	
when	one	needs	to	keep	his	train-of-thought	while	analyzing	spatial	data.	
On	the	other	hand,	even	though	OLAP	is	well-suited	for	knowledge	discovery,	it	
is	not	adapted	for	the	analysis	of	spatial	data	(Caron,	1998).	In	fact,	OLAP	treats	
spatial data like other data and spatial analysis is limited to predefined nominal lo-
cations	(e.g.,	names	of	countries,	states,	regions,	cities).	Support	for	spatiotemporal	
analyses	is	seriously	limited	(no	spatial	visualization,	practically	no	spatial	analysis,	
no	map-based	exploration	of	data,	etc.).	Extraction,	transformation,	and	load	(ETL)	
processes	cannot	deal	with	most	aspects	of	spatial	data.	Nevertheless,	it	is	possible	
to	achieve	good	results	by	marrying	GIS	with	OLAP.	Several	projects	in	Canada,	
U.S.,	France,	Portugal,	and	elsewhere	have	shown	the	superiority	of	this	combina-
tion	over	stand-alone	GIS	or	OLAP	for	interactive	spatial	data	exploration.	

Towards.SOLAP

In	most	of	those	projects,	GIS	and	OLAP	are	loosely	coupled	and	the	GIS	serves	
as	a	map	viewer	of	OLAP	operations.	In	more	tightly	coupled	cases,	functions	are	

Spatial Online Analytical Processing (SOLAP) �0�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

added	to	support	cartographic	drilling	in	the	GIS	and	to	maintain	the	synchroniza-
tion	between	the	GIS	and	OLAP	displays.	Sometimes,	a	common	user	interface	is	
built	over	the	GIS-OLAP	combo	to	make	the	application	appear	as	a	unique	system.	
Depending	on	the	functions	that	are	prioritized,	the	result	is	termed	OLAP-centric,	
GIS-centric,	or	hybrid	(LGS	Group,	2000).
More	recently,	SOLAP	software	has	reached	the	market,	allowing	even	tighter	in-
tegration	between	GIS	and	OLAP	(data	and	functions).	Bédard,	Proulx,	and	Rivest	
(2005)	make	a	clear	distinction	between	“SOLAP	applications”	developed	with	
any	of	the	previously	mentioned	approaches	and	software,	and	“SOLAP	software”	
which relies on a hybrid approach and is specifically meant to improve the devel-
opment	of	SOLAP	applications.	In	comparison	to	the	loosely	coupled	GIS-OLAP,	
SOLAP software typically provides four major benefits: (1) important savings in
development	time	(no	programming	required),	(2)	richer	SOLAP	applications	(more	
advanced	functions,	better	GIS-OLAP	integration	on	complex	issues),	(3)	tested	user	
interfaces	designed	especially	for	SOLAP	operations,	and	(4)	easier	editing	of	the	
multidimensional data structure (using a SOLAP administrator module). The first
SOLAP	software	commercially	available	(JMap®	Spatial	OLAP)	was	developed	
by	Bédard’s	team	at	Laval	University.	In	spite	of	such	advances,	today’s	SOLAP	
implementations still face challenges to become more efficient. In fact, coupling
GIS	and	OLAP	is	not	enough,	many	hidden	challenges	must	be	overcome,	resulting	
in important development efforts before obtaining an efficient solution.
The	objective	of	the	present	chapter	is	to	introduce	the	reader	to	the	main	advan-
tages	and	challenges	related	to	the	use	of	spatial	data	and	SOLAP.	We	begin	with	
an	overview	of	the	particularities	of	spatial	data	to	help	readers	to	better	assess	the	
challenges	that	SOLAP	development	presents.	After,	we	summarize	the	history	of	
SOLAP	applications	and	technologies	as	well	as	today’s	state-of-the-art.	Then,	we	
focus	on	the	concepts,	issues,	challenges,	and	solutions	related	to	SOLAP.	In	the	last	
sections,	we	discuss	future	trends	and	present	concluding	remarks.	This	content	is	
presented	from	a	geomatics	engineering	perspective;	it	is	written	for	computer	scien-
tists	who	know	the	fundamental	concepts	related	to	spatial	datacubes	and	OLAP.

Background. Information

With	the	recent	evolution	of	geomatics	sciences	(geodesy,	global	positioning	sys-
tems	(GPS),	photogrammetry,	remote	sensing,	surveying,	mapping,	and	GIS),	we	
gather	today	terabytes	of	land-related	data	everyday	at	a	cost	that	is	much	lower	
than	a	decade	ago.	Mainstream	applications	using	spatial	data	are	appearing	ev-
erywhere. The benefits of using spatial data have been discussed previously in a
general	manner.	In	the	particular	case	of	SOLAP,	the	tight	integration	of	GIS	and	

�02 Bédard, Rivest, & Proulx

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

OLAP bring significant profits such as (1) offering the most intuitive user interface
insofar	to	access	cross-referenced	spatial	data,	(2)	offering	the	fastest	solution	to	
access	aggregated	spatial	data,	and	(3)	allowing	the	discovery	of	spatial	patterns	
and	clusters	of	phenomena	that	cannot	be	detected	with	OLAP	solely	(e.g.,	a	phe-
nomenon	taking	place	in	the	forest	stands	located	along	a	river	gets	unnoticed	when	
the	next	aggregated	level	of	OLAP	spatial	units	are	administrative	regions	made	
of	thousands	of	stands).	A	tight	GIS-OLAP	integration	is	also	needed	when	one	
requires	a	high	level	of	interactivity	between	the	maps	and	the	tables	or	charts,	a	
complete	synchronization	between	the	visual	variables	(semiology)	of	maps,	tables,	
and charts, as well as a high level of flexibility into the display of information that
relates	to	places	or	regions	which	may	vary	in	time.	This	is	the	case	for	maps	dis-
playing	simultaneously	several	dimensions	and	measures,	for	multimaps	display-
ing	a	same	phenomenon	for	categories	of	members,	and	for	the	sequential	display	
of	maps	illustrating	the	evolution	of	a	phenomenon	over	time,	among	others.	For	
example, one may want to synchronize a first set of views where drilling into one
of	them	triggers	the	others	automatically	(e.g.,	drilling	on	a	national	map	of	cancer	
ratio	for	men	automatically	triggers	a	drill	operation	into	tabular	national	statistics	
and	into	a	histogram),	then	to	open	a	second	set	of	views	also	synchronized	among	
themselves	(e.g.,	for	women	cancer)	for	comparison	purposes,	then	to	create	a	mul-
timap	displaying	one	map	per	year	for	the	last	10	years	(to	see	the	evolution),	then	
to	add	pie	charts	on	top	of	each	region	of	the	map	to	see	the	distribution	of	cancers	
by	category,	then	to	synchronize	with	a	second	10-year	multimap	displaying	data	
from the National Inventory of Industrial Pollutants, to slice and dice into the first
multimap	 to	highlight	a	given	 type	of	cancers	and	 into	 the	 second	multimap	 to	
highlight	a	given	type	of	pollutant,	to	visually	look	for	clusters	or	spatial	correla-
tions	that	may	take	place	regardless	of	region	boundaries,	to	drill	on	a	selection	of	
three	regions	to	see	further	details	as	well	as	the	municipal	boundaries,	to	overlay	
the	hydrographic	network	and	the	sources	for	water	distribution	systems,	to	roll	up	
rivers	and	sources	per	watershed,	to	get	the	total	length	of	potentially	contaminated	
rivers	per	municipality,	to	display	and	count	the	number	of	water	sources	per	mu-
nicipality	for	each	of	the	10	years,	to	show	the	municipalities	with	the	highest	ratio	
of	cancers	of	a	given	type	that	overlay	the	rivers	with	a	given	type	of	pollutant	and	
which	happen	to	have	their	highest	ratio	of	the	given	cancer	within	5	years	after	
this	pollutant	was	released	above	a	given	threshold,	to	rollup	for	the	entire	country	
to	check	if	this	is	a	local	or	national	pattern,	to	rollup	for	the	last	25	years	to	see	
if	this	is	an	event-based	phenomena	or	a	general	trend	for	this	place,	and	so	forth.	
Such flexibility to navigate into space as well as time to analyze a phenomenon
requires a very efficient coupling between the GIS and the OLAP, in terms of in-
terface,	functions,	and	speed.	We	have	encountered	such	needs	in	different	experi-
ments	with	university	researchers	(e.g.,	archaeologists,	kinesiologists)	and	real-life	
projects	at	the	Quebec	National	Institute	of	Public	Health	(users	=	epidemiologists),	
the	Quebec	Ministry	of	Transportation	(users	=	civil	engineers),	Laval	University	

Spatial Online Analytical Processing (SOLAP) �0�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Executive	Vice-Presidency	(users	=	students	recruitment	team),	Canada	National	
Coast	Guard	(users	=	incident	analysts),	and	so	forth.
Typically,	most	transactional	and	analytical	applications	are	simple	from	a	geomatics	
point	of	view.	They	typically	use	spatial	data	obtained	from	a	single	source,	they	are	
out-of-date	(one	or	more	years	old	is	the	rule),	they	are	incomplete	and	they	show	
limited	precision	regarding	the	position	of	objects	(in	the	order	of	tens	of	meters,	
and more). Although this is sufficient for most users (e.g., tourists, news, routing),
other	users	have	more	complex	needs	that	require	frequent	updates,	integration	of	
data	from	different	sources,	integration	of	data	from	different	epochs,	integration	of	
field measurements, integration of real time data, and so on. Insofar, most research
in	SOLAP	has	been	done	with	the	needs	of	the	former	group	in	mind.	We	can	say	
that	 today’s	 research	 community	 is	 succeeding	 in	 bringing	 spatial	 data	 into	 the	
OLAP	arena.	However,	major	challenges	remain	for	the	next	several	years	in	order	
to	satisfy	the	needs	of	more	advanced	users.	We	still	need	to	bring	OLAP	capabili-
ties	into	the	geomatics	engineering	arena.

Particularities.of.Spatial.Data

Computer displays are flat; however the Earth is not. Furthermore, it is not a simple
sphere nor a simple ellipsoid flattened at the poles. Earth’s true shape looks more
like a nice potato and it is scientifically defined as the geoid. The geoid is an equi-
potential	surface	that	corresponds	to	the	mean	sea	level.	This	physical	model	is	the	
mathematical figure of the Earth as defined by its irregular gravity field. It is the
model	used	by	national	mapping	agencies	to	produce	topographic	maps	upon	which	
most	thematic	maps	are	based.	It	is	more	irregular	than	the	ellipsoid	of	revolution	
because	of	the	irregularities	of	the	Earth	surface	(19,000	meters	from	the	top	of	
Mount	Everest	to	the	bottom	of	Mariana	Trench)	and	because	of	the	different	densi-
ties	associated	with	different	types	of	minerals.	The	difference	between	the	ellipsoid	
and	the	geoid	can	be	up	to	100	meters	but	we	project	our	measurements	on	the	el-
lipsoid	to	simplify	the	mathematics	and	to	remain	more	stable	over	time	(the	geoid	
changes	over	time).	Since	the	force	of	gravity	is	everywhere	perpendicular	to	the	
geoid	(not	to	the	ellipsoid),	our	measurements	(land-based	or	satellite-based)	are	
influenced by the geoid. A slight vertical deviation of the measuring instrument may
create	differences	of	hundreds	of	meters	when	reporting	a	position	from	the	geoid	
to	the	ellipsoid.	The	geomatics	science	dealing	with	the	geoid	and	the	ellipsoid	is	
called	physical	geodesy;	it	provides	the	basis	for	all	measurements	(see	Hofmann-
Wellenhof	&	Moritz,	2005).
Once	we	know	the	difference	between	the	geoid	and	the	ellipsoid,	we	must	project	
the measured position to a flat surface such as a paper map or a computer display.
This	cannot	be	done	without	distortion,	either	of	angles,	areas,	or	more	typically,	
of	both	at	the	same	time.	This	has	an	immediate	impact	on	the	shapes	of	objects,	

�04 Bédard, Rivest, & Proulx

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

lengths,	perimeters,	areas,	and	positions,	for	example.	To	control	these	distortions,	
we	use	different	map	projections	having	different	mathematical	properties.	Thus,	
from	a	unique	position	and	shape	on	an	ellipsoid,	we	may	obtain	different	shapes	
and	positions	on	different	maps.	These	differences	may	be	up	to	hundreds	of	meters	
in	some	cases.	The	geoid-ellipsoid-map	transfer	process	is	illustrated	by	Figure	1	
(for	details,	see	Iliffe,	2000).
In	spite	of	the	existence	of	a	standard	international	ellipsoid,	many	mapping	agencies	
prefer to use a national or continental ellipsoid that better fits the surface of their
country.	They	also	use	different	map	projections	that	minimize	the	distortions	for	the	
geometry	of	their	country.	Furthermore,	different	projects	or	organizations	within	
a	same	country	often	use	different	map	projections	over	a	same	zone	depending	of	
the	total	area	to	be	covered	by	their	maps.	Selecting	the	most	appropriate	ellipsoid	
and	map	projection	allows	them	to	minimize	(for	the	entire	zone	covered	by	a	map	
series)	the	distortion	between	map	measurements	and	the	measurements	made	on	
the	Earth	(i.e.,	with	regard	to	the	geoid).
Furthermore,	there	are	different	spatial	referencing	systems	to	determine	the	posi-
tion	of	objects	on	maps.	One	may	use	a	latitude-longitude-height	international	el-
lipsoidal	coordinate	system,	an	x-y	coordinate	system	based	on	a	map	projection,	
an	x-y-z	coordinate	 system	from	a	3D	digital	 terrain	model,	 a	 street	 address	or	
street-intersection,	a	place	name,	a	distance-direction	to	a	landmark,	a	route-direc-
tion-distance-offset	linear	referencing	systems,	and	so	on.

Figure 1. From one object measured on the Earth to different map representa-
tions

Spatial Online Analytical Processing (SOLAP) �0�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

The	preceding	differences	can	be	controlled	algorithmically	and	are	currently	han-
dled	by	commercial	software	and	interoperability	standards.	However,	there	remains	
other	sources	of	distortion	that	cannot	be	controlled	totally	when	dealing	with	mul-
tiple	sources	of	data:	diversity	of	measurement	instruments,	inherent	imprecision	
of the measurement methods and tools used, data acquisition specifications that
evolve	over	 the	years,	 limitations	of	 the	human	interpretation	of	measured	phe-
nomena, independent data update policies, conflicting priorities over data quality,
and	so	forth.	The	overall	results	are	spatial	data	integration	problems	that	cannot	
be	avoided.	Such	problems	happen,	for	example,	when	one	integrates	updates	to	an	
existing	dataset	(e.g.,	original	maps	can	have	been	made	from	aerial	photographs	
but updates may be coming from field surveys required by municipal bylaws).
They	also	happen	when	one	integrates	data	from	two	adjacent	maps	made	by	two	
municipalities.	They	also	take	place	when	integrating	different	data	collected	in-
dependently	for	different	purposes	such	as	land	use	maps	and	utilities	maps.	They	
also	occur	when	using	real-time	GPS	vehicle	tracking	over	a	road	map	made	from	
satellite	imagery.	Many	more	examples	could	be	presented	to	explain	why	spatial	

Figure 2. Example of spatial aggregation-generalization mismatch where aggre-
gated data provide true data but unreadable map while generalized data produce
readable map but inexact data

�06 Bédard, Rivest, & Proulx

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

data never fit together or with reality! This creates major challenges for SOLAP as
explained	later	in	this	chapter.
In	addition	to	the	preceding	issues,	when	one	needs	to	have	a	more	global	carto-
graphic	view	of	a	phenomenon,	it	is	not	possible	to	simply	aggregate	spatial	data	
since	the	map	or	display	becomes	overcrowded	and	unreadable.	One	must	rather	
use	map	generalization	processes.	According	to	Weibel	and	Dutton	(1999,	p.	126),	
“Map	generalization	 is	 responsible	 for	 reducing	complexity	 in	a	map	 in	a	scale	
reduction	process,	emphasizing	the	essential	while	suppressing	the	unimportant,	
maintaining	logical	and	unambiguous	relations	between	map	objects,	and	preserv-
ing	aesthetic	quality.”	Every	map,	including	the	map	made	from	source	data,	uses	
some level of generalization. By definition, a map is a model of only a subset of
the	reality	where	unnecessary	details	are	eliminated	and	useful	data	emphasized	
while	maintaining	the	map	readability.	Going	from	a	large	map	scale	to	a	smaller	
map	scale	worsens	the	situation.	Categories	of	objects	as	well	as	individual	objects	
are	eliminated,	others	are	replaced	by	a	symbol	of	larger	or	smaller	size,	some	are	
displaced, their shape is simplified, topological relationships may change, groups
such	as	“building	blocks”	replace	individual	buildings	where	the	density	is	too	high,	
and	so	on.	In	other	words,	the	content	of	every	map	may	lie,	the	measurements	made	
on	every	map	may	lie,	and	a	topological	relationship	on	every	map	may	lie.	Taking	
this	into	account	in	a	multiresolution	spatial	datacube	goes	beyond	the	traditional	
topological	concepts.
Figure	2	shows	an	example	of	the	impact	of	map	generalization	with	regard	to	the	
spatial	dimension	of	a	datacube	(a	“spatial	aggregation-generalization	mismatch”).	
This introduces specific concerns for the interactive exploration of spatial data as
seen	later	in	this	chapter.
From	a	geomatics	point	of	view,	spatial	and	temporal	data	are	typically	considered	
different	from	thematic	data.	Spatial	and	temporal	data	are	reference	data;	they	are	
used	to	locate	phenomena	in	space	and	time	rather	than	describing	them.	They	are	
not	intrinsic	to	a	phenomenon	like	thematic	data	are.	Since	the	human	brain	has	built-
in	capabilities	to	use	space	and	time,	users	intuitively	rely	on	spatial	and	temporal	
data	to	integrate	other	data	obtained	from	different	sources.	Such	integration	from	
different	sources	is	typically	performed	without	a	priori	planning	since	space	and	
time	are	perceived	by	most	to	be	universal	reference	systems.	The	preceding	pages	
have	shown	that	positioning	objects	in	space	is	more	complex	than	it	appears,	creat-
ing	unexpected	problems	when	one	develops	more	advanced	SOLAP	applications.	
Time shows similar problems but to a much lower level of difficulty since it can be
perceived	as	a	one-dimensional	universe	with	0D	(instant)	and	1D	(interval)	events,	
as	compared	to	the	3D	spatial	universe	having	0D	(point),	1D	(line),	2D	(surface),	
and	3D	(volume)	objects.	From	a	computer	science	point	of	view,	recent	techni-
cal	developments	have	reduced	the	need	to	maintain	distinctions	between	spatial	
data	and	other	data	(Longley,	Goodchild,	Maguire,	&	Rhind,	1999).	Nevertheless,	

Spatial Online Analytical Processing (SOLAP) �0�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

special	care	must	always	be	taken	when	processing	data	from	different	maps	and	
positioning	technologies	(e.g.,	GPS)	as	typically	is	the	case	when	we	build	spatial	
data	warehouses	and	spatial	datacubes.

Evolution.of.SOLAP

In	spite	of	a	decade	of	research,	testing,	and	experiments,	it	is	only	recently	that	
SOLAP	 applications	 have	 been	 implemented	 into	 organizations	 for	 their	 daily	
decision making. Examples in very diverse fields exist in Canada, France, United
States,	and	Portugal	in	particular.	Furthermore,	products	supporting	some	SOLAP	
requirements	have	appeared	on	the	market	recently,	either	from	key	players	such	
as	SAS,	ESRI,	MapInfo,	Business	Objects,	and	Cognos,	or	from	smaller	innovative	
companies	such	as	KHEOPS	Technologies	and	ProClarity.	These	applications	and	
technologies	are	still	in	their	infancy	but	they	already	provide	new	services.	
The	term	spatial	OLAP,	or	SOLAP,	was	coined	by	Bédard	(1997)	in	parallel	to	the	
term	spatial	databases.	Several	research	projects	aiming	at	combining	analytical	data-
bases	and	spatial	databases	have	been	carried	out	since	the	mid-1990s.	Pioneers	from	
Simon	Fraser	University	developed	the	GeoMiner	prototype	(Stefanovic,	1997)	that	
included an efficient method for spatial datacube materialization (Han, Stefanovic,
&	Koperski,	1998;	Stefanovic,	Han,	&	Koperski,	2000).	Other	pioneers	from	Laval	
University	(Bédard,	1997;	Rivest,	Bédard,	&	Marchand,	2001)	experimented	with	
varied	combinations	of	GIS	and	OLAP	technologies	with	external	users	in	different	
fields of application (Bédard et al., 2005) before developing the first commercial hybrid
solution:	JMap®	Spatial	OLAP	Extension	(Bédard,	2005).	They	developed	several	
concepts,	including	new	OLAP	functions,	spatiotemporal	topological	dimensions	
(Marchand,	2004),	the	use	of	raster	representations	of	space	for	evolving	datacubes	
(Miquel,	Bédard,	&	Brisebois,	2002),	and	integrating	multiple	representations	in	
spatial	datacubes	(Bédard	&	Bernier,	2002;	Bernier	&	Bédard,	2005),	for	instance.	
Many	research	projects	have	built	bridges	between	OLAP	and	GIS	to	facilitate	the	
development	of	hybrid	systems	similar	to	the	most	recent	commercial	releases,	such	
as	GOAL	(Kouba,	Matousek,	&	Miksovsky,	2000),	SIGOLAP	(Ferreira,	Campos,	
&	Tanaka,	2001),	SOVAT	(Scotch	&	Parmanto,	2005),	GMLA	Web	Services	(Silva,	
Times,	Fidalgo	&	Barros,	2005),	and	CommonGIS	(Hernandez,	Voss,	&	Gohring,	
2005).	A	 team	 from	 the	 University	 of	 Minnesota	 developed	 MapCube,	 a	 data	
structure	and	visualization	tool	for	spatial	datacubes	(Shekhar,	Lu,	Tan,	Chawla,	&	
Vatsavai,	2001).	Another	group	from	INSA-Lyon,	in	France,	also	developed	a	pro-
totype	of	SOLAP	application	and	is	working	on	fundamental	concepts	(Tchonikine,	
Miquel,	Laurini,	Ahmed,	Bimonte,	&	Baillot,	2005).	In	collaboration	with	the	Laval	
University	team,	they	worked	on	evolving	dimensions	(Body,	Miquel,	Bédard,	&	
Tchounikine,	2002)	and	highly	heterogeneous	data	(Miquel	et	al.,	2002).	Fidalgo,	
Times,	Silva,	and	Souza	(2004)	have	proposed	a	GeoDWFrame	based	on	the	star	

�08 Bédard, Rivest, & Proulx

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

schema	to	facilitate	the	design	of	spatial	dimensional	schemas.	Several	Italian	re-
searchers	have	been	active	in	fundamental	research	related	to	SOLAP.	Pourabbas,	
Rafanelli,	Ferri,	and	others	have	published	widely	on	PQL,	a	pictorial	query	lan-
guage	for	spatial	data	using	OLAP	operators	(Ferri,	Pourabbas,	&	Rafanelli,	2002;	
Pourabbas,	2003;	Pourabbas	&	Rafanelli,	2002).	Pourabbas	(2003)	has	presented	
the	use	of	binding	attributes	to	build	a	bridge	while	preserving	the	structure	of	both	
the	spatial	database	and	the	OLAP	datacube.	Pestana	is	developing	the	concept	of	
spatial	dashboard	based	on	SOLAP	technology	and	collaborates	with	Laval	team	
on	conceptual	modeling	of	spatial	datacubes	(Pestana,	da	Silva,	&	Bédard,	2005).	
Other	projects	aim	at	improving	spatial	indexation,	spatial	aggregation,	or	spatial	
operators	(e.g.,	Gupta,	Harinarayan,	Rajaraman,	&	Ullman,	1997;	Han	et	al.,	1998;	
Papadias,	Kalnis,	Zhang,	&	Tao,	2001;	Prasher	&	Zhou,	2004;	Stefanovic	et	al.,	
2000;	Wang,	Pan,	Ren,	Cui,	Ding,	&	Perrizo,	2003;	Zhang,	Li,	Rao,	Yu,	Chen,	&	
Liu,	2003;	Zhou,	Truffet,	&	Han,	1999).
In spite of all this research activity, commercial solutions efficiently coupling OLAP
and	GIS	appeared	on	the	market	only	very	recently.	These	solutions,	some	OLAP-
centric,	 some	 GIS-centric,	 some	 hybrid,	 present	 only	 a	 subset	 of	 the	 desirable	
functionalities	of	a	spatial	OLAP	technology.	Some	are	still	limited	to	static	map	
visualization	of	OLAP	query	results.	Others	require	the	storage	of	each	potential	
individual	map	view	on	the	server,	thus	affecting	the	update	effectiveness	of	spatial	
data.	These	solutions	present	limitations	with	regard	to	interactive	data	manipula-
tion	and	exploration	 through	cartographic	views.	However,	 the	main	bottleneck	
still	 remains	 the	building	of	 spatial	datacubes,	especially	when	data	come	from	
different	sources.

SOLAP.Concepts

Spatial	OLAP	(SOLAP) can be defined as a type of software that allows rapid and
easy	navigation	within	spatial	databases	and	that	offers	many	levels	of	information	
granularity,	many	themes,	many	epochs,	and	many	display	modes	synchronized	
or	not:	maps,	tables,	and	diagrams.	The	key	to	SOLAP	concepts	is	multiresolution	
spatial	databases	or	data	warehouses.	Of	particular	interest	is	the	4-tier	architecture	
for spatial data warehousing. The first tier represents the first data warehouse where
integrated, homogeneous detailed data are stored. This first tier is very useful since
the	integration	of	spatial	data	from	heterogeneous	sources	can	be	done	automati-
cally	only	for	the	simplest	cases,	that	is,	rarely.	Current	ETL	technology	does	not	
handle	spatial	data	while	“spatial	data	integrators”	and	“interoperability	standards”	
were	not	developed	to	support	the	aggregation	of	spatial	data	or	the	matching	of	
map	objects	from	different	map	scales.	The	second	tier	represents	a	second	data	
warehouse	where	the	results	of	the	aggregation	processes	are	stored.	Since	automatic	

Spatial Online Analytical Processing (SOLAP) �0�

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

map	generalization	is	not	fully	automated	and	requires	important	human	interven-
tion,	this	second	tier	is	necessary	to	store	the	results.	The	third	tier	is	comprised	of	
the	datamarts,	which	can	be	further	processed	and	organized	according	to	a	vertical	
view	of	the	data	(e.g.,	within	a	range	of	map	resolutions)	or	a	horizontal	view	(e.g.,	
within	a	region	or	a	department).	The	fourth	tier	includes	SOLAP	clients	that	can	
add	local	information.	Such	architecture	is	useful	when	the	fusion	of	detailed	source	
data	represents	important	efforts	that	cannot	be	fully	automated.	Bernier	and	Bédard	
(2005) describe the difficulties related to spatial data warehousing.
The	SOLAP	concepts	support	the	multidimensional	paradigm	and	enriched	data	
exploration	based	on	an	explicit	spatial	reference	represented	on	maps.	This	explicit	
spatial	reference	can	relate	to	dimensions	and	measures	as	SOLAP	supports	“spa-
tial”	dimensions	and	“spatial”	measures.	Three	types	of	spatial	dimensions	can	be	
defined: the nongeometric spatial dimensions, the geometric spatial dimensions, and
the mixed spatial dimensions (Bédard, Merrett, & Han, 2001). In the first type of
spatial	dimension,	the	spatial	reference	uses	nominal	data	only	(e.g.,	place	names)	
as	no	geometry	or	 cartographic	 representation	 is	 associated	with	 the	dimension	
members.	It	is	the	only	type	of	spatial	dimension	supported	by	nonspatial	OLAP.	
This	type	of	spatial	dimension	is	treated	like	other	descriptive	dimensions	causing	
the	spatiotemporal	analysis	to	be	potentially	incomplete	and	the	discovery	of	certain	
spatial	relations	or	correlations	between	the	phenomena	under	study	to	be	missed	
by	the	analyst.	The	two	other	types	of	spatial	dimensions	aim	at	maximizing	the	
potential to discover spatial relations and correlations that do not fit in predefined
boundaries.	The	geometric	spatial	dimensions	comprise,	for	all	dimension	members,	
at	all	levels	of	detail,	geometric	shapes	(e.g.,	polygons	to	represent	city	boundaries)	
that	are	spatially	referenced	to	allow	their	dimension	members	(e.g.,	New	York)	to	be	
visualized	and	queried	on	maps.	The	mixed	spatial	dimensions	comprise	geometric	
shapes	for	a	subset	of	the	levels	of	details.	The	members	of	the	geometric	and	mixed	
spatial	dimensions	can	be	displayed	on	maps	using	visual	variables	that	relate	to	the	
values	of	the	different	measures	contained	in	the	datacube	being	analyzed.	Figure	
3	presents	examples	of	the	three	types	of	spatial	dimensions.	
Two types of spatial measures can be defined (Bédard et al., 2001; Han et al.,
1998; Rivest et al., 2001; Stefanovik, 1997; Tchounikine et al., 2005). A first type

Figure 3. Three types of spatial dimensions: nongeometric, geometric, and mixed
spatial dimensions (Modeled on Rivest, Bédard, Proulx, & Nadeau, 2003)

��0 Bédard, Rivest, & Proulx

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

is	geometric.	It	is	the	set	of	all	the	geometries	representing	the	spatial	objects	cor-
responding	to	a	particular	combination	of	dimension	members	from	one	to	many	
spatial	dimensions.	It	consists	of	a	set	of	coordinates,	which	requires	computing	
geometric	operations	such	as	spatial	union,	spatial	merge,	or	spatial	intersection.	A	
second	type	of	spatial	measure	is	numeric.	It	results	from	the	computation	of	met-
ric	or	topological	spatial	operators	such	as	“surface,”	“distance,”	and	“number	of	
neighbors.”	Figure	4	presents	the	two	types	of	spatial	measures.	A	set	of	measures	
(spatial	and	nonspatial)	organized	according	 to	a	set	of	dimensions	 (spatial	and	
nonspatial)	form	a	spatial	datacube.	
In	a	SOLAP	client	interface,	variants	of	the	OLAP	operators	are	used	in	order	to	
take	advantage	of	the	spatial	multidimensional	data	structure	and	of	the	different	
levels	of	detail	of	the	spatial	data.	The	general	operators	are	drill-down,	rollup	(or	
drill-up),	 drill-across,	 swap	 (or	 pivot),	 and	 slice	 and	dice.	These	operations	 are	
available	in	the	different	types	of	displays	(maps,	diagrams,	or	tables)	and	can	be	
specialized	according	to	the	type	of	dimension	they	manipulate	(Rivest,	Bédard,	
Proulx,	&	Nadeau,	2003).	Thematic operations	allow	the	manipulation	of	thematic	
(or	descriptive)	dimensions,	while	keeping	the	same	level	of	spatial	and	temporal	
granularities. Temporal	operations	allow	the	manipulation	of	temporal	dimensions,	
while	keeping	the	same	level	of	thematic	and	spatial	granularities.	Spatial	operations	
allow	the	manipulation	of	the	spatial	dimensions	while	keeping	the	same	level	of	
thematic	and	temporal	granularities.	Spatial	operations	can	be	executed	directly	by	
clicking	on	the	elements	(dimension	members)	shown	on	the	maps.
SOLAP	tools	can	support	different	types	of	views:	tables,	various	types	of	diagrams	
and	charts,	and	various	types	of	maps.	These	include	simple	maps	(i.e.,	single	maps	
showing	many	geometric	elements),	multimaps	(i.e.,	many	maps,	each	related	to	a	
particular	parameter,	for	example,	one	map	per	year),	complex	thematic	maps	(i.e.,	
thematic	maps	 composed	 of	 superimposed	 visual	 variables,	 e.g.,	 color,	 pattern,	
shape	of	symbols,	one	per	selected	measure),	and	maps	with	superimposed	diagrams	
(i.e.,	maps	with	little	charts	superimposed	on	the	geometric	elements	of	the	map).	
The	SOLAP	views	can	support	operator	synchronization	and	graphical	semiology	
synchronization.	Figure	5	presents	an	example	of	a	SOLAP	display	comprised	of	

Figure 4. The two types of spatial measures supported in SOLAP tools

Spatial Online Analytical Processing (SOLAP) ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

three	views	(map,	table,	chart)	that	use	semiology	synchronization	(in	a	context	of	
car	accidents	analysis).	
The	semiology	synchronization	helps	to	keep	a	visual	homogeneity	from	one	display	
to	the	other	and	from	one	navigation	operation	to	the	other.	However,	it	involves	tak-
ing	care	of	potential	collisions	of	graphical	semiology	rules	since	theoretically,	the	
same	rules	do	not	always	apply	to	all	view	types.	Many	more	geographic	visualiza-
tion,	or	geovisualization,	features	can	be	incorporated.	Geovisualization	represents	a	
research field of its own and can be defined as a private activity in which unknowns
are	revealed	in	a	highly	interactive	environment.	It	is	an	active	process	in	which	an	
individual engages in sorting, highlighting, filtering, and otherwise transforming
data	in	a	search	for	patterns	and	relationships	(MacEachren,	1994).	
SOLAP	tools	may	be	used	to	implement	a	wide	range	of	spatially	referenced	deci-
sion	applications.	For	example,	a	road	network	management	application	may	help	
to find, in seconds and without SQL queries, the effects of variations in the annual
average daily traffic on the average road conditions, or calculating the intervention
costs	(Rivest	et	al.,	2001).	In	a	similar	way,	it	is	possible	to	analyze	the	number	
and	the	gravity	of	car	accidents	according	to	their	position	on	the	road	network,	the	
characteristics	of	the	road,	or	the	environment	and	the	time	period	(Rivest,	Gignac,	
Charron,	&	Bédard,	2004).	Another	example	is	an	environmental	health	applica-
tion	that	allows	investigating	the	relationships	between	health	and	environmental	
phenomena,	like	the	incidence	of	respiratory	diseases	according	to	air	quality	mea-
surements	 (Bédard,	Gosselin,	Rivest,	Proulx,	Nadeau,	Lebel,	&	Gagnon,	 2003).	
Another	example	relates	to	the	training	of	olympic-level	speed	skating	athletes	us-
ing	GPS	measurements,	they	use	SOLAP	to	analyze	their	performances	on	various	
sections	of	a	track	according	to	various	technical,	mechanical,	and	meteorological	

Figure 5. An example of the use of semiology synchronization in a SOLAP between
the map view (left), table view (centre), and chart view (right) spread over two
contiguous computer displays (using JMap spatial OLAP)

��2 Bédard, Rivest, & Proulx

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

parameters	(Veilleux,	Lambert,	Santerre,	&	Bédard,	2004).	In	forestry,	a	3D	SOLAP	
application	has	also	been	recently	implemented	(Brisebois,	2004)	as	well	as	one	for	
archaeology (Rageul, 2004). These applications benefit from the three-dimensional
aspect	of	space,	that	is,	the	volume	of	the	phenomena	being	studied.	For	instance,	
when	archaeological	excavation	lots	are	represented	as	volumes,	it	is	possible	to	
navigate	in	the	various	stratigraphic	units	to	compare	the	lots	according	to	their	
color,	granulometry,	consistency,	geographic	and	stratigraphic	positions,	and	the	
type	of	artifacts	found	(Fortin	&	Bédard,	2004).	

SOLAP.Issues,.Challenges,.and.Recommendations

Although	there	remain	computing	challenges	for	SOLAP,	our	geomatics	engineer-
ing	perspective	leads	us	to	see	the	most	crucial	issues	as	the	ones	that	relate	to	the	
management and processing of spatial referencing. We need to facilitate the flow
of	spatial	data	from	the	geospatial	data	sources	to	the	datacubes.	When	compared	
to	traditional	GIS	research,	research	in	spatial	data	warehousing,	spatial	OLAP,	and	
spatial	datacubes	requires	to	deal	with	more	complex	issues	like:

•	 Integrating	time	(which	is	ubiquitous	in	datacubes)	with	space:	Very	few	GIS	
databases	are	temporal,	and	when	they	are,	they	suffer	from	the	same	com-
plexity	issues	as	traditional	DBMS	(versionings,	querying	versions)	but	they	
must	also	deal	with	the	evolution	and	tracing	of	the	position	of	objects	(e.g.,	
a	moving	point	representing	a	vehicle	in	real-time)	as	well	as	the	evolution	
of their shape (e.g., a forest fire, a building which has been enlarged), and
their	mergings/splittings	(e.g.,	many	country	boundaries	have	changed	since	
the	late	1980s).	Furthermore,	it	is	not	rare	to	see	spatial	datacubes	where	the	
temporal resolution of the measures is finer (e.g., monthly values) than that of
the	available	cartographic	data	(e.g.,	annual	maps),	creating	new	challenges	
especially	with	using	the	proper	metadata	and	user	warnings.

•	 Producing	spatial	data	at	different	levels	of	granularity	for	a	same	display	size:	
Today’s	SOLAP	implementations	sometimes	lead	to	the	display	of	“zoomed	
out”	maps	 that	 become	 too	 crowded	 and	 inappropriate	 for	 the	 analysis	 of	
larger areas. Improperly applying on-the-fly automatic map generalization
may	lead	to	drilling	deadends	and	incoherence	between	the	map	and	the	cube	
measures.

•	 Integrating	spatial	data	from	heterogeneous	and	spatially	divergent	sources,	
for	instance	(in	spite	of	advances	in	interoperability,	uncontrolled	distortions	
cannot	be	resolved	automatically):	In	particular,	spatial	aggregation	and	sum-
marization	often	cannot	be	derived	from	detailed	spatial	data,	requiring	the	
use	of	smaller-scale	maps	from	other	sources	and	to	automatically	match	cor-
responding	spatial	objects	between	different	map	scales	(a	step	that	is	not	yet	

Spatial Online Analytical Processing (SOLAP) ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

fully automatic). A similar challenge is to define and support spatial datacubes
interoperability	(e.g.,	extending	ISO/TC211	and	OGC	standards).

•	 Improving	the	integration	of	spatiotemporal	operators	(topological	and	metric)	
in	the	measures	and	dimensions	of	spatial	datacubes,	and	to	feed	the	spatio-
temporal	facts

•	 Improving	conceptual	modeling	of	spatiotemporal	datacubes	(e.g.,	using	mul-
tidimensional	stereotypes	in	UML	along	with	existing	spatial	and	temporal	
stereotypes)

•	 Developing	a	SOLAP	design	method	that	helps	users	to	discover	earlier	what	
they	can	do	with	SOLAP	and	how	they	can	change	their	way	of	exploring	
their	spatial	data.	

•	 Developing	new	graphical	semiology	rules	simultaneously	compatible	with	
maps,	charts,	and	tables	to	better	support	the	cognitive	process	involved	dur-
ing	the	exploration	of	data	

•	 Enriching	the	integrity	constraints	for	combined	spatial-temporal-aggregative	
constraints	

•	 Developing	methods	that	help	to	select	the	best	sources	and	processes	to	feed	
the	spatial	datacube:	In	contrast	to	nonspatial	datacubes,	spatial	data	at	the	most	
aggregated	levels	do	not	necessarily	come	from	the	detailed	maps.	Moreover,	
there	exist	several	potential	sources	of	maps	that	are	highly	heterogeneous.	
Typically,	 every	 source	of	 spatial	data	 requires	 important	work	 to	make	 it	
fit the needs of the users. Considering the time and budget constraints along
with	the	quality	requirements	of	the	users,	selecting	the	best	combinations	of	
sources is a complex task that would benefit from a formal method.

•	 Developing	explicit	ways	to	assess	and	display	the	estimated	quality	of	in-
formation, both internally (i.e., respect of data specifications) and externally
(i.e., fitness for use)

•	 Improving	the	performance	of	spatial	datacube	building	(spatiotemporal	analy-
sis,	spatial	aggregation,	spatiotemporal	indexing,	etc.)	and	indexing	(see	for	
example	the	evolution	of	the	R-Tree	spatial	indexing	method	in	Manolopoulos	
et	al.,	2005)

•	 Improving	existing	technologies	for	enriched	SOLAP	and	better	integration	
into spatial data production workflows

Future.Trends.and.Conclusion

Research	related	to	spatial	data	warehousing	and	spatial	OLAP	has	grown	over	a	10	
year period from the first ideas developed in a small number of isolated university

��4 Bédard, Rivest, & Proulx

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

laboratories	to	today’s	emergence	of	an	R&D	community.	Researchers	from	several	
countries	are	addressing	fundamental	issues.	Insofar,	this	community	comes	mainly	
from	computer	science	departments.	The	geomatics	community	is	only	discovering	
the	power	of	datacubes	and	OLAP.	Rather,	this	community	has	looked	into	other	
directions	such	as	geovisualization,	advanced	GIS,	and	expert	systems	 to	better	
support	spatial	decision	making	and	geographic	knowledge	discovery.	Looking	at	
the	issues	of	SOLAP	from	a	geomatics	engineering	perspective	is	very	promising.	
It	brings	a	new	level	of	challenges	that	relate	to	the	very	nature	of	spatial	data	and	
its	use	in	multistakeholder	environments.	This	enriches	the	concepts	and	technolo-
gies	already	available.	In	particular,	it	allows	the	integration	of	the	early	SOLAP	
solutions	into	the	mainstream	of	spatial	data	production	which	is	highly	more	com-
plex than perceived at first sight. To further advance knowledge and to improve
SOLAP	 applicability	 to	 complex	 interoperable	 environments,	 it	 is	 necessary	 to	
merge	knowledge	from	the	geomatics	and	the	computer	science	communities.	We	
expect that the most significant trends will emerge from this combination. From a
scientific point of view, these trends would include the support of highly efficient
building	of	spatial	datacubes	(i.e.,	without	human	intervention),	real-time	SOLAP,	
mobile	SOLAP,	spatial	dashboards,	and	spatially	constrained	data	mining.	From	
a	commercial	point	of	view,	trends	are	likely	to	follow	the	typical	evolution	from	
bridging	separate	technologies	(OLAP-centric	or	GIS-centric)	into	more	integrated	
solutions	(bidirectional	bridges	with	common	user	interface)	into	fully	integrated	
technologies	that	interoperate	via	Web	services	and	interoperate	with	spatial	legacy	
systems.	It	is	to	contribute	to	these	trends	that	we	have	put	forward	a	major	NSERC	
Industrial	Research	Chair	and	that	we	invite	the	interested	readers	to	collaborate	
with	us	on	the	projects	mentioned	here.

Acknowledgments

We recognize the financial support of Canada NSERC Industrial Research Chair
in	Geospatial	Databases	for	Decision-Support	and	its	partners	(http://mdspatialdb.
chair.scg.ulaval.ca/).

References

Bédard,	Y.	(1997,	November).	Spatial OLAP.	Paper	presented	at	the	Annual	Forum	on	
R&D,	Geomatics	VI,	Canadian	Institute	of	Geomatics,	Montreal,	Canada.

Spatial Online Analytical Processing (SOLAP) ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Bédard,	Y.	(2005,	May).	Integrating GIS and OLAP: A new way to unlock geospa-
tial data for decision-making.	Paper	presented	at	the	Location	Technology	and	
Business	Intelligence	Conference,	Philadelphia.

Bédard,	Y.,	&	Bernier,	E.	(2002,	July).	Supporting multiple representations with
spatial view management and the concept of “VUEL”.	Paper	presented	at	the	
Joint	Workshop	on	Multi-Scale	Representations	of	Spatial	Data,	International	
Society	for	Photogrammetry	and	Remote	Sensing,	Working	Group	IV/3,	In-
ternational	Cartographic	Association	Communication	on	Map	Generalization,	
Ottawa,	Canada.

Bédard,	Y.,	Gosselin,	P.,	Rivest,	S.,	Proulx,	M.	J.,	Nadeau	M.,	Lebel,	G.	&	Gagnon,	
M.	F.	(2003).	Integrating	GIS	components	with	knowledge	discovery	tech-
nology	for	environmental	health	decision	support.	International Journal of
Medical Informatics, 70(1),	79-94.

Bédard,	Y.,	Merrett,	T.,	&	Han,	J.	(2001).	Fundamentals	of	spatial	data	warehous-
ing	for	geographic	knowledge	discovery.	In	H.	Miller	&	J.	Han	(Eds.),	Geo-
graphic data mining and knowledge discovery	(pp.	53-73). London:	Taylor	
&	Francis.

Bédard,	Y.,	Proulx,	M.	J.,	&	Rivest,	S.	(2005).	OLAP	improvement	for	geographic	
analysis:	Examples	of	realizations	and	technological	solutions	(Enrichissement	
du	OLAP	pour	l’analyse	géographique:	Exemples	de	réalisations	et	différentes	
possibilités	technologiques).	New Information Technologies Journal (Revue
des nouvelles technologies de l’information), B-1,	1-20.

Bernier,	E.,	&	Bédard,	Y.	(2005).	Using	a	data	warehousing	architecture	to	combine	
automatic	generalization	and	multiple	representation	for	Web-based	on-demand	
mapping.	In	A.	Ruas	&	W.	McKinnis	(Eds.),	Challenges in the portrayal of
geographic information: Issues of generalisation and multi scale representa-
tion.	(Forthcoming)

Body,	M.,	Miquel,	M.,	Bédard,	Y.,	&	Tchounikine,	A.	(2002).	A	multidimensional	
and	multiversion	structure	for	OLAP	applications.	In	Proceedings of the ACM
Fifth International Workshop on Data Warehousing and OLAP	(pp.	1-6).

Brisebois,	A.	 (2004).	Analysis of the potential of extension SOLAP concept for
the investigation of the three-dimensional spatial data (Analyse du potentiel
d’extension du concept SOLAP pour l’exploration des données spatiales 3D).	
Master’s	thesis,	Laval	University,	Canada.

Buzan,	T.,	&	Buzan,	B.	(2003).	Mind map, drawing intelligence (Mind map, des-
sine-moi l’intelligence).	Paris:	Éd.	l’Organisation.

Caron,	P.	Y.	(1998).	Application of on-line analytical processing (OLAP) techno-
logies in a spatio temporal context (Étude du potentiel OLAP pour supporter
l’analyse spatio-temporelle). Master’s	thesis,	Laval	University,	Canada.

��6 Bédard, Rivest, & Proulx

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Ferreira,	A.	C.,	Campos,	M.	L.,	&	Tanaka,	A.	(2001).	An	architecture	for	spatial	and	
dimensional analysis integration. In Proceedings	of	SCI	2001,	v.XIV	CSE,	
Part	II	(pp.	392-395).	

Ferri,	F.,	Pourabbas,	E.,	&	Rafanelli,		M.	(2002).	The	syntactic	and	semantic	cor-
rectness of pictorial configurations to query geographic databases by PQL. In
Proceedings of SAC 2002	(pp.	432-437).

Fidalgo,	R.	N.,	Times,	V.	C.,	Silva,	J.,	&	Souza,	F.	F.	(2004).	GeoDWFrame:	A	
framework	for	guiding	the	design	of	geographical	dimensional	schemas.	In	
Proceedings of DaWaK 2004 (LNCS	3181,	pp.	26-37).

Fortin,	M.,	&	Bédard,	Y.	(2004,	October).	Development of geospatial data explo-
ration application for spatio-temporal knowledge issue from archaeological
excavation (Développement d’un système de découverte des connaissances
spatio-temporelles issues d’un chantier de fouilles archéologiques).	 Paper	
presented	at	Géomatique	2004,	Canadian	Institute	of	Geomatics,	Montreal,	
Canada.

Fortin,	C.,	&	Rousseau,	R.	(1989).	Cognitive psychology: An information processing
approach (Psychologie cognitive: Une approche de traitement de l’informa-
tion).	Presses	de	l’Université	du	Québec.

Franklin,	C.	 (1992,	April).	An	 introduction	 to	 geographic	 information	 systems:	
Linking	maps	to	databases.	Database,	13-21.

Gupta,	H.,	Harinarayan,	V.,	Rajaraman,	A.,	&	Ullman,	J.	D.	(1997).	Index	selec-
tion	for	OLAP.	In	Proceedings of the	13th International Conference on Data
Engineering	(pp.	208-219).	

Han, J., Stefanovic, N., & Koperski, K. (1998). Selective materialization: An effi-
cient	method	for	spatial	data	cube	construction,	research	and	development	in	
knowledge	discovery	and	data	mining.	In	Proceedings of the Second Pacific-
Asia Conference, PAKDD’98 (pp.	144-158).

Hernandez,	V.,	Voss,	A.,	&	Gohring,	W.	(2005).	Sustainable	decision	support	by	
the	use	of	multi-level	and	multi-criteria	spatial	analysis	on	the	Nicaragua	De-
velopment	Gateway,	From	pharaohs	to	geoinformatics.	In	Proceedings of the
Fédération Internationale des Géomètres Working Week 2005 and GSDI-8	
(pp.	16-21).

Hofmann-Wellenhof,	B.,	&	Moritz,	H.	(2005).	Physical geodesy (1st	ed.).	Spring-
er.

Iliffe,	J.	C.	(2000).	Datums and map projections.	London:	Whittles	Publishing.
KHEOPS.	(2005).	JMAP spatial OLAP.	Retrieved	June	14,	2006,	from	http://www.

kheops-tech.com/en/jmap/solap.jsp
Kouba,	Z.,	Matousek,	K.,	&	Miksovsky,	P.	(2000).	On	data	warehouse	and	GIS	

integration.	In	Proceedings of DEXA 2000 (LNCS	1873,	pp.	604-613).	

Spatial Online Analytical Processing (SOLAP) ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

LGS	Group	Inc.	(2000).	Analysis of health surveillance business intelligence tools
and applications.	Final	Draft.

Longley,	P.	A.,	Goodchild,	M.	F.,	Maguire,	D.	J.,	&	Rhind,	D.	(Eds.).	(1999).	In-
troduction.	In	Geographical information systems: Principles, techniques, ap-
plications and management (2nd	ed.,	p.	1296).	Wiley.

Longley,	P.	A.,	Goodchild,	M.	F.,	Maguire,	D.	J.,	&	Rhind,	D.	(2001).	Geographic
information systems and science.	Wiley.

MacEachren,	A.	M.	(1994).	Visualization	in	modern	cartography:	Setting	the	agenda.	
In	A.	M.	MacEachren	&	D.	R.	F.	Taylor	(Eds.),	Visualization in modern car-
tography, 28(1),	1-12.

Manolopoulos,	Y.,	Nanopoulos,	A.,	Papadopoulos,	A.	N.,	&	Theodoridis,	Y.	(2005).	
Rtrees: Theory and applications	(Series	in	Advanced	Information	and	Knowled-
ge	Processing).	Springer.

Marchand,	P.	(2004).	The spatio-temporal topological operator dimension, a hy-
perstructure for multidimensional spatio-temporal exploration and analysis.	
Doctoral	thesis,	Laval	University,	Canada.

Miquel,	M.,	Bédard,	Y.,	&	Brisebois,	A.	(2002).	Conception	of	a	geospatial	data	
warehouse	from	heterogeneous	data	sources,	application	example	in	foresty	
(Conception	d’entrepôts	de	données	géospatiales	à	partir	de	sources	hétérogè-
nes,	exemple	d’application	en	foresterie).	Engineering of Information Systems
(Ingénierie des Systèmes d’information), 7(3),	89-111.

Newell,	A.	(1990).	Unified theories of cognition.	Cambridge,	MA:	Harvard	Uni-
versity	Press.

Papadias, D., Kalnis, P., Zhang, J., & Tao, Y. (2001). Efficient OLAP operations in
spatial	data	warehouses.	Proceedings of the 7th International Symposium on
Spatial and Temporal Databases (SSTD) (LNCS	2001,	pp.	443-459).	Sprin-
ger	Verlag.	

Pestana,	G.,	da	Silva,	M.	M.,	&	Bédard,	Y.	(2005).	Spatial	OLAP	modeling:	An	over-
view	based	on	spatial	objects	changing	over	time.	In	Proceedings of the IEEE
3rd International Conference on Computational Cybernetics, Mauritius.

Pourabbas,	E.	(2003).	Cooperation	with	geographic	databases.	In	M.	Rafanelli	(Ed.),	
Multidimensional databases: Problems and solutions	(pp.	393-432).	Hershey,	
PA:	Idea	Group	Publishing.

Pourabbas,	E.,	&	Rafanelli,	M.	 (2002).	A	pictorial	query	 language	for	querying	
geographic	databases	using	positional	and	OLAP	operators.	SIGMOD Record,
31(2),	22-27.

Prasher,	S.,	&	Zhou,	X.	(2004).	Multiresolution	amalgamation:	Dynamic	spatial	data	
cube	generation.	In	Proceedings of the Fifteenth Conference on Australasian
Databases, ACM International Conference Proceeding Series, 52,	103-111.	

��8 Bédard, Rivest, & Proulx

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	of	
Idea	Group	Inc.	is	prohibited.

Rageul,	N.	 (2004).	Développement d’une application d’exploration de données
géospatiales comme support à la fouille archéologique.	Undergraduate	report,	
INSA-Strasbourg,	France.

Rivest,	S.,	Bédard,	Y.,	&	Marchand,	P.	(2001).	Towards	better	support	for	spatial	
decision-making: Defining the characteristics of spatial on-line analytical
processing.	Geomatica, 55(4),	539-555.

Rivest,	S.,	Bédard,	Y.,	Proulx,	M.	J.,	&	Nadeau,	M.	(2003,	October).	SOLAP: A
new type of user interface to support spatio-temporal multidimensional data
exploration and analysis.	Paper	presented	at	the	ISPRS	Joint	Workshop	of	
WG	II/5,	 II/6,	 IV/1	and	IV/2	on	Spatial,	Temporal	and	Multi-Dimensional	
Data	Modelling	and	Analysis,	Quebec,	Canada.

Rivest,	S.,	Gignac,	P.,	Charron,	J.,	&	Bédard,	Y.	(2004,	October).	Development of a
spatio-temporal interactive data exploration system for the Information Data
Bank of Ministry of Transportations, Quebec (Développement d’un système
d’exploration spatio-temporelle interactive des données de la Banque d’infor-
mation du ministère des Transports du Québec).	Paper	presented	at	Géomatique	
2004,	Canadian	Institute	of	Geomatics,	Montreal,	Canada.

Scotch,	M.,	&	Parmanto,	B.	(2005).	SOVAT:	Spatial	OLAP	visualization	and	analysis	
tool.	In	Proceedings of the 38th Hawaii International Conference on System
Sciences	(p.	142b).

Shekhar,	S.,	Lu,	C.	T.,	Tan,	X.,	Chawla,	S.,	&	Vatsavai,	R.	(2001).	Map	Cube:	A	
visualization	tool	for	spatial	data	warehouses.	In	H.	Miller	&	J.	Han	(Eds.),	
Geographic data mining and knowledge discovery	 (pp.	 74-109).	 London:	
Taylor	&	Francis.

Silva,	J.,	Times,	V.,	Fidalgo,	R.,	&	Barros,	R.	(2005).	Providing	geographic-mul-
tidimensional	decision	support	over	the	Web.	In	Proceedings of the	APWeb
2005: 7th Asia-Pacific Web Conference (LNCS	3399,	pp.	477-488).

Standing,	L.	(1973).	Learning	10000	pictures.	Quarterly Journal of Experimental
Psychology, 25(2),	207-222.

Stefanovic,	N.	(1997).	Design and implementation of on-line analytical processing
(OLAP) of spatial data.	Master’s	thesis,	Simon	Fraser	University,	Canada.

Stefanovic,	N.,	Han,	J.,	&	Koperski,	K.	(2000).	Object-based	selective	materializa-
tion for efficient implementation of spatial data cubes. IEEE Transactions on
Knowledge Discovery and Data Engineering, 12(6),	938-958.

Tchounikine,	A.,	Miquel,	M.,	Laurini,	R.,	Ahmed,	T.,	Bimonte,	S.,	&	Baillot,	V.	
(2005).	Overview	of	works	about	spatio-temporal	data	inetgration	into	hyper-
cubes	(Panorama	de	travaux	autour	de	l’intégration	de	données	spatio-tem-
porelles	dans	les	hypercubes).	New Information Technologies Journal (Revue
des nouvelles technologies de l’information), B-1,	21-33.

Spatial Online Analytical Processing (SOLAP) ���

Copyright	©	2007,	Idea	Group	Inc.	Copying	or	distributing	in	print	or	electronic	forms	without	written	permission	
of	Idea	Group	Inc.	is	prohibited.

Veilleux,	J.	P.,	Lambert,	M.,	Santerre,	R.,	&	Bédard,	Y.	(2004,	October).	Uses of GPS
and exploration and SOLAP analysis tools for the evaluation and analysis of
outdoor sports (Utilisation du système de positionnement par satellites (GPS)
et des outils d’exploration et d’analyse SOLAP pour l’évaluation et le suivi
de sportifs de haut niveau).	Paper	presented	at	Géomatique	2004,	Canadian	
Institute	of	Geomatics,	Montreal,	Canada.

Wang, B., Pan, F., Ren, D., Cui, Y., Ding, Q., & Perrizo, W. (2003). Efficient OLAP
operations	for	spatial	data	using	Peano	trees.	In	Proceedings of the 8th ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Dis-
covery	(pp.	28-34).

Weibel,	R.,	&	Dutton,	G.	(1999).	Generalising	spatial	data	and	dealing	with	mul-
tiple	representations.	In	P.	Longley,	M.	Goodchild,	D.	Maguire,	&	D.	Rhind	
(Eds.),	Geographical information systems: Principles and technical issues
(pp.	125-155).	Wiley.

Zhang,	L.,	Li,	Y.,	Rao,	F.,	Yu,	X.,	Chen,	C.,	&	Liu,	D.	(2003).	An	approach	to	ena-
bling	spatial	OLAP	by	aggregating	on	spatial	hierarchy.	In	Proceedings of
DaWaK 2003 (pp.	35-44).

Zhou, X., Truffet, D., & Han, J. (1999). Efficient polygon amalgamation methods
for	spatial	(OLAP)	and	spatial	data	mining.	Lecture Notes in Computer Sci-
ences, 1651,	167-187.

320 About the Editors

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

About the Editors

Robert Wrembel works as an assistant professor at the Poznań University of
Technology, Poland. In 2001 he received a PhD in computer science (databases).
In 1996-2006 he took part in four research projects on databases and four industrial
projects in the field of information technologies. He has paid a number of visits to
research and education centers, including the INRIA Paris-Rocquencourt (France),
the Paris Dauphine University (France), the Klagenfurt University (Austria), and
the Loyola University (USA). His research interests encompass mainly data ware-
house technologies (temporal, multiversion, object-relational) and object-oriented
systems (views, data access optimization). Robert Wrembel works also as a lecturer
at Oracle Poland.

Christian Koncilia works as data warehouse consultant at Panoratio Database Im-
ages, Inc. in Munich, Germany. Prior to this position, he was lecturer at the Depart-
ment of Informatics-Systems at the University of Klagenfurt, Austria. He holds a
master’s degree in information science, as well as a doctorate in applied computer
science from the University of Klagenfurt. During his MS studies he worked as
project manager for a large Carinthian company with more than 7,000 employees.
Among other duties, he was responsible for the introduction of an OLAP system.
His research interests include temporal databases, data warehousing, multidimen-
sional databases, and data mining. He published several papers in international
conference proceedings.

About the Authors 321

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

About the Authors

Jovanka Adzic received the political science degree in 1986 (University of Bel-
grade), then she received the computer science degree in 1996 (University of Tu-
rin) and a master’s degree in the telecommunication field in 1998 (Politecnico of
Turin). She joined TILAB in 1996 where she was involved in projects focused on
evaluating database technologies (particularly OODBMS) for telecommunication
needs, data analysis, and data warehouses solutions for traffic and customer data
(fixed and mobile network). She has been involved as a technical expert and later as
a project leader of the very innovative solution for the Fraud Detection & Analysis
for mobile operator.

Yvan Bédard has been professor of GIS and spatial databases at Laval University
Department of Geomatics Sciences, Canada since 1986. He was director of the
Centre for Research in Geomatics for 7 years and is involved in the GEOIDE Net-
work of Centers of Excellence. Dr. Bédard has participated to major projects with
government agencies and private industries in Canada and abroad and has presented
about 350 papers and conferences worldwide. Actually, Dr. Bédard is chair holder
of the industrial research chair in geospatial database for decision support funded
by National Science and Engineering Research Council of Canada.

Ameur Boujenoui holds bachelor’s and master’s degrees in engineering (applied
mathematics) from INSEA (Morocco) and a PhD in management from HEC Mon-
treal (Canada). He has more than 30 years experience in management and consult-
ing. He is currently a teaching associate at the University of Ottawa. His research
interests include business strategy and policy, corporate governance, and change
management.

322 About the Authors

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Carlo Combi received the master’s degree in EE by the Politecnico of Milan. In 1993
he received the PhD in biomedical engineering. In 1994 and 1995 he was postdoctoral
fellow at the Department of Biomedical Engineering of the Politecnico of Milan.
From 1987 to 1996 he worked within the research group in medical informatics at
the Politecnico of Milan. From April 1996 to October 2001, Carlo Combi was with
the Department of Mathematics and Computer Science of the University of Udine
as assistant professor. Since November 2001, he has been with the Department of
Computer Science of the University of Verona: from November 2001 to February
2005, he was associate professor of computer science; since March 2005, he has
been professor of computer science.

Karen C. Davis (karen.davis@uc.edu) is an associate professor of electrical and
computer engineering and computer science at the University of Cincinnati, USA.
She received an MS and a PhD in computer science from the University of Louisi-
ana, Lafayette in 1987 and 1990, respectively. Her research interests include data-
base design, query processing and optimization, and data warehousing. Dr. Davis
has advised more than 20 graduate students and supervised more than 40 under-
graduate senior design project students. She has been recognized for outstanding
classroom instruction and curriculum innovation with five teaching awards. She is
a senior member of IEEE and an ABET computer engineering program evaluator.
She has served on program committees including DOLAP, DAWAK, ER, ICDE,
and CIKM.

Valter Fiore joined TILAB in 1976. From the beginning of his work in TILAB,
his research interest covered several aspects: software environments for advanced
languages for telecommunications needs, operating systems, database technology,
and architecture. Since 1996, he has been interested in ETL and data warehouse
server-side problems with particular attention to the population aspects related to
transformation and loading vast amounts of data into data warehouses. He has been
technical leader in ideation and development of the infrastructure based ETL.

Pedro Furtado is an assistant professor of computer sciences at the University of
Coimbra, Portugal where he teaches both undergraduate and postgraduate curricula,
mostly in data management related areas. He is also an active researcher in the
databases group of the CISUC research laboratory. His research interests include
data warehousing, approximate query answering, parallel and distributed database
systems, with a focus on performance and scalability and data management in dis-
tributed data intensive systems. He received a PhD in computer science from the
University of Coimbra-Portugal in 2000.

About the Authors 323

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Ashima Gupta obtained a BS in computer science in 1998 from Fergusson College,
University of Pune, Pune, India. She earned an MS in computer science in 2002
from the University of Cincinnati. She worked for three years as a systems analyst
in the Pediatric Informatics Department at Cincinnati Children’s Hospital Research
Foundation where she researched and implemented computational methods and ap-
plications to facilitate genome research (http://cismols.cchmc.org). Currently, she
is based in Chicago and working with a nonprofit children’s aid organization in an
effort to provide basic rights of survival to underprivileged children.

Claudio Gutierrez is an associate professor at the Department of Computer Sci-
ence, Universidad de Chile, Chile. He received his PhD from Wesleyan University
in 1999. His research interests lie in the intersection of logic, databases and semantic
Web. Currently he is associate researcher at the Center for Web Research where he
works on semantic Web databases.

Carlos A. Hurtado is an assistant professor at the Department of Computer Sci-
ence, Universidad de Chile, Chile. He received his PhD in computer science from
the University of Toronto in 2002. His research areas include databases, semantic
Web, data mining, OLAP, and data warehousing. Currently he is a researcher at the
Center for Web Research and a visitor researcher at the School of Computer Science
and Information Systems, Birkbeck College, University of London.

Ganaël Jatteau holds a bachelor’s of engineering degree from ENSSAT (École
Nationale Supérieure de Sciences Appliquées et de Technologie) and a master’s in
computer science from UQO. His research interests include data mining and associa-
tion rule mining using concept lattices. He is currently working for PCI Geomatics
(Gatineau, Canada).

Nikos Karayannidis received his degree in electrical and computer engineering in
1997 from the National Technical University of Athens. In 2003 he received the PhD
from the same university. His thesis focused on the issues of physical organization
and indexing of multidimensional data with hierarchies, as well as the processing
of OLAP and data warehousing queries. Through his participation in several data
warehousing and OLAP projects, Dr. Karayannidis has gained a useful experience
in the field. He is currently working as the project manager and lead data modeler
for the Data Warehouse implementation project for the Hellenic Telecommunica-
tions Organization (OTE S.A.). His research interests include indexing/storage
structures for DW/OLAP systems, query processing for DW/OLAP systems, and
processing of ETL procedures.

324 About the Authors

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Rokia Missaoui has been a full professor in the Department of Computer Science
and Engineering at UQO (Université du Québec en Outaouais) since August 2002.
Before joining UQO, she was a professor at UQAM (Université du Québec à Mon-
tréal) between 1987 and 2002. She obtained her bachelor’s (1971) and her master’s
in engineering (1978) in applied mathematics from INSEA (Morocco), and her PhD
(1988) in computer science from Université de Montréal. Her research interests
include knowledge discovery from databases, formal concept analysis, integration
of data mining and data warehousing technologies, as well as content-based image
retrieval and mining.

Tadeusz Morzy received his MSc, PhD, and Polish habilitation from the Technical
University of Poznań, Poland. Currently, he is professor of computer science at the
Institute of Computing Science of the Technical University of Poznań. He has held
visiting positions at the Loyola University, New Orleans in the U.S., Klagenfurt
University in Austria, University La Sapienza in Italy, Free University Amsterdam,
and the Polish-Japanese Institute of Information Technology, Warsaw, Poland. He
has authored and coauthored over 100 papers on databases, data mining, and data
warehousing. He is a coauthor of the book Concurrency Control in Distributed
Database Systems by North-Holland, and an editor and coauthor of Handbook on
Data Management by Springer. He served as the general chair of the 2nd ADBIS
Conference (1998), and has been a member of numerous program committees of
international conferences and workshops. His research interests include data min-
ing, data warehousing, transaction processing in database and data warehouse sys-
tems, access methods and query processing for databases, database optimization
and performance evaluation.

Sami Naouali holds a PhD in computer science from Université de Nantes, and
a master’s degree in CS from Institut National Polytechnique (Grenoble, France).
He was a postdoctoral fellow at UQO in 2005. His current research covers data
warehousing and the integration of knowledge into data cubes.

Barbara Oliboni received the master’s degree in computer science from the Uni-
versity of Verona with the thesis “Representing Semistructured Data by Means of
WG-Log: Querying Lorel Data Sources.” In 2003 she received the PhD in computer
engineering from the Politecnico of Milan with the dissertation “Blind Queries and
Constraints: Representing Flexibility and Time in Semistructured Data.” Since 2004,
she has been a postdoctoral fellow at the Department of Computer Science of the
University of Verona.

About the Authors 325

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Marie-Josée Proulx holds an MSc in geomatics sciences from Laval University,
Canada. She actually works at the Centre for Research in Geomatics of Laval Uni-
versity as a research professional within the GIS and spatial databases team. She
participates in the industrial research chair in geospatial databases for decision sup-
port. Her professional interests include spatial databases modeling, multidimensional
modeling, spatial data warehouse, SOLAP, and metadata management.

Sonia Rivest holds a MSc in geomatics sciences from Laval University, Canada.
She actually works at the Centre for Research in Geomatics of Laval University as
a research professional with the GIS and spatial databases team. She is part of the
industrial research chair in geospatial databases for decision support. Mrs. Rivest
works in multidimensional databases, spatial data warehouses, and SOLAP.

Stefano Rizzi received his PhD in 1996 from the University of Bologna, Italy. Since
2005 he has been full professor at the University of Bologna, where he is the head
of the Data Warehousing Laboratory. He has published about 60 papers in refereed
journals and international conferences mainly in the fields of data warehousing,
pattern recognition, and mobile robotics. He joined several research projects on
the above areas and has been involved in the PANDA thematic network of the Eu-
ropean Union concerning pattern-base management systems. His current research
interests include all the aspects related to data warehouse design and business intel-
ligence, in particular multidimensional modeling, data warehouse evolution, and
what-if analysis.

Uwe Röhm obtained his master’s degree in computer science from the University
of Passau, Germany, in 1996. He received his PhD from ETH Zurich, Switzerland,
in 2002 for his work on “Online Analytical Processing with a Cluster of Databases.”
This work was part of the PowerDB project at ETH Zurich that investigated large
database clusters and that was partly sponsored by Microsoft. Uwe Röhm currently
holds a position as lecturer in database systems at the School of Information Tech-
nologies at the University of Sydney, Australia. He has research interests in database
clusters, freshness-aware caching, and database support for bioinformatics.

Timos Sellis received his degree in electrical engineering in 1982 from the National
Technical University of Athens (NTUA), Greece. In 1983 he received the MSc
from Harvard University and in 1986 the PhD from the University of California at
Berkeley. In 1986, Professor Sellis joined the Department of Computer Science of
the University of Maryland, College Park, and in 1992 the Computer Science Divi-
sion of NTUA, where he is currently a full professor. His research interests include
peer-to-peer database systems, data warehouses, the integration of Web and data-

326 About the Authors

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

bases, and spatial database systems. He has published over 120 articles in journals
and conferences and has been an invited speaker in major international events.

Alkis Simitsis is a visiting lecturer at the University of Peloponnese. He received
his PhD from the National Technical University of Athens (NTUA) in 2004. His
research interests include extraction-transformation-loading (ETL) processes in
data warehouses, query processing/optimization, and security issues. He has pub-
lished more than 20 papers in refereed journals and international conferences in
the above areas.

Luisella Sisto received the computer science degree in 1981 (University of Turin).
She joined TILAB in 1982, where she was initially involved in projects in the ar-
tificial intelligence area, focusing on natural language understanding and expert
systems for troubleshooting. Then she was involved in projects concerning use
of constraints satisfaction techniques for workforce management, monitoring of
telecommunication systems, services leveraging data analysis and data warehouse
solutions, and identity management.

Spiros Skiadopoulos is an assistant professor at the University of Peloponnese,
Greece. He received his diploma and PhD from the National Technical University
of Athens and his MSc from UMIST. His research interests include spatial and
temporal databases, constraint databases, query evaluation, and optimization and
data warehouses. He has published more than 25 papers in international refereed
journals and conferences.

Kurt Stockinger is a computer scientist with the Scientific Data Management
Research Group of Berkeley Lab, Berkeley, California. His research interests
include database access optimization, multidimensional indexing for large-scale
data warehouses and performance optimization of parallel and distributed systems
(data grids). Previously, Kurt was leading the Optimization Task of the European
DataGrid Project managed by CERN. He was also a visiting researcher at the
California Institute of Technology where he worked on object-oriented databases
for high energy physics applications. Kurt studied computer science and business
administration at the University of Vienna, Austria, and the Royal Holloway Col-
lege, University of London, England. He received a PhD in computer science and
business administration from the University of Vienna, Austria, under supervision
of CERN’s Database Group.

Aris Tsois received a diploma in electrical and computer engineering from the
National Technical University of Athens (NTUA), Greece, in 1995 and a PhD in

About the Authors 327

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

computer science from the same university in 2005. In September 2005 he started
working at the Joint Research Center in Italy on data warehousing and data mining
projects. His research interests include on-line analytical processing technology, data
warehouses, query optimization, and artificial intelligence. Dr. Tsois has worked in
different projects related to data warehousing and OLAP and has published several
articles in refereed international conferences and workshops.

Alejandro Vaisman was born in Buenos Aires, Argentina. He received a BA in
civil engineering, a BA in computer science, and a PhD in computer science from
the University of Buenos Aires. He has been a professor at the University of Buenos
Aires since 1994. He was an invited professor at the Universidad Politecnica de
Madrid in 1997. In 2001 he was appointed vice-dean of the School of Engineering
and Information Technology at the University of Belgrano, in Argentina. He was
a visiting researcher at the University of Toronto, University of Hasselt, and Uni-
versidad de Chile. His research interests are in the field of databases, particularly
in OLAP, data warehousing, data mining, P2P databases, XML, and the semantic
Web. He is currently with the University of Buenos Aires, lecturing several courses
on database systems topics. In 2004 he was appointed vice-head of the Department
of Computer Science, and chair of the graduate program in data mining.

Panos Vassiliadis is a lecturer at the University of Ioannina. He received his PhD
from the National Technical University of Athens in 2000. His research interests
include data warehousing, Web services, and database design and modeling. He has
published more than 25 papers in refereed journals and international conferences
in the above areas.

Kesheng Wu is a staff computer scientist with the Scientific Data Management
Research Group of Berkeley Lab, Berkeley, California. His recent research interests
focus on indexing large high-dimensional datasets and managing of distributed data
warehouses. He is one of the principal contributors to the FastBit project which is
developing a set of efficient bitmap indices and applying them to different applica-
tions. Previously, he had worked on a number of parallel computing projects and
industrial software engineer projects. He received his PhD in computer science from
the University of Minnesota in 1997.

328 Index

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Index

Symbols
2PC (see two-phase-commit) 235

A
accuracy 69
additivity 17
ad hoc analysis 137
ad hoc star queries 137
advanced modeling 9
aggregate navigation 32, 53
aggregation 17
algorithm 269
analysis and modeling 61
association rule mining (ARM) 257, 261
attribute value decomposition (AVD) 186

B
basic bitmap index 161
BBC (see byte-aligned bitmap code) 166
binning 164
bit-sliced index (BSI) 186
bitmap index tuning 168
BSI (see bit-sliced index) 186
byte-aligned bitmap code (BBC) 166

C
cache approximation query routing 241
canonical schemas 52
chunk-tree representation 147
combustion dataset 171
completeness 69
compression 166
conceptual design 18
conceptual model 122
conceptual modeling 2
consistency 69
contextual data quality 66
controlled requirements expression

(CORE) 62
conventional routing strategies 239
convergence 11
CORE (see controlled requirements ex-

pression) 62
correctness 242
cost model 206, 217
cross-dimension attribute 10
cube dependence graph 38
cube view 37
currency 69

Index 329

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

D
DAG (see directed acyclic graph) 35
database management system (DBMS)

89, 300
data communication cost (DC) 217
data cube 37
data driven 62
data mining (DM) 254
data partitioning 236
data quality 58, 65
data replication 236
data source availability 70
data warehouse (DW) 1, 88, 203
data warehouse design 1
data warehouse operational processes 112
data warehouses (DWs) 2
data warehousing 62, 254
DBMS (see database management system)

89, 300
DC (see data communication cost) 217
decisional model 20
decision support system (DSS) 58, 62
delay freshness 244
delta object exchange model (DOEM) 281
descriptive attribute 10
DFM (see dimensional fact model) 3
dimensional fact model (DFM) 3
dimension attribute 8
dimension constraint 34, 51-53
dimension schema 51
directed acyclic graph (DAG) 35
DM (see data mining) 254
DOEM (see delta object exchange model)

281
domain 73
drill-down 268
DSS (see decision support system) 58
DSS-METRIQ 66
DW (see data warehouse) 1, 88, 203
dynamic hierarchies 15

E
EEBSI (see encoded bit-sliced index) 187
encoded bitmap index (EBI) 185
encoding 161
entity/relationship (E/R) 3

entry point 9
equality-encoded bitmap 174
equality encoded bit-sliced index (EEBSI)

187
ETL (see extraction, transformation, and

load) 88, 112, 300
expected query response time 70
eXtensible Markup Language (XML) 278
extraction 119
extraction, transformation, and load (ETL)

88, 112, 300

F
facts 28, 37, 216
fact table 37
FAS (see freshness-aware scheduling) 232
flow measure 17
FPR (see fully partitioned replica) 224
freshness-aware scheduling (FAS)

232, 242
freshness index by data deviation 244
frozen dimension 51
full replica (FR) 222
fully partitioned replica (FPR) 224

G
GEM (see graphical semistructured tempo-

ral data model) 282
geographical information system (GIS)

299
global positioning systems (GPS) 301
global rollback 107
goal question metric (GQM) 61
GPS (see global positioning system) 301
GQM (see goal question metric) 61
graphical semistructured temporal data

model (GEM) 282
graph morphism 36

H
hash-partition fact and replicate dimen-

sions strategy (PFRD-H) 215
heterogeneous 36
hierarchical chunking 147
hierarchical pregrouping transformation

138

330 Index

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

hierarchy 9
hierarchy domain 28, 35, 44
hierarchy schema 28, 35
high-energy physics dataset 171
homogeneous 36
hub 102
hybrid design 236

I
IBIS (see issue-based information system)

61
initial aggregations dictionary 73
initial data dictionary 73
initial requirements 72
intrinsic data quality 66
issue-based information system (IBIS) 61

J
joint application development (JAD) 61

K
knowledge discovery in databases (KDD)

257

L
LAN (see local area network) 203
LC (see local processing cost) 217
loading atomicity 91
local area network (LAN) 203
local processing cost (LC) 217
logical model 122
low bandwidth 208

M
merging cost (MC) 217
metrics 9
middleware 235
modularization 99
motivation 116
multidimensional data model 28
multiple arc 12

N
NCR methodology 62

near real time (NRT) 91
node-partitioned data warehouse (NPDW)

203, 204
nonstandard/complex transformation 91
NPDW (see node-partitioned data ware-

house) 203
NPDW (see node-partitioned data ware-

houses) 204
NRT (see near real time) 91
null element 45

O
O&M (see operation and maintenance)

106
object exchange model (OEM) 281
OLAP (see online analytical processing)

2, 34, 136, 159, 230, 299
OLTP (see online transaction processing)

2, 159
online analytical processing (OLAP)

2, 136, 159, 230, 299
online decision support system 230
online transaction processing (OLTP)

2, 159
operational systems 62
operation and maintenance (O&M) 106
optional arc 12
organizational model 20

P
parallelism 88, 96
parallel join 206
partition and replicate strategy (PRS)

208, 214
partitioned replica (PR) 224
partitioning 93, 206, 213
PFRD-H 215
physical database design 88, 93
physical design alternatives 235
pipelining 88, 96
PMap (see property map) 188
pragmatic approach 66
previous knowledge 239
process driven 62
property map (PMap) 188

Index 331

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

PRS (see partition and replicate strategy)
208, 214

PR (see partitioned replica) 224

Q
QFD (see quality function deployment) 61
quality dimensions 73
quality function deployment (QFD) 61
quantifying 63
queries 58
query-dependence 239
query frequency 70
query routing 238

R
ragged (or incomplete) hierarchy 14
range-encoded bitmap indices 173
RC (see repartitioning cost) 217
relational OLAP (ROLAP) 138
reliability/availability 91
repartitioning cost (RC) 217
replication 212, 242
replication for availability 209
requirements elicitation 61
requirements validation 62
right-hand side (RHS) 256
ROLAP (see relational OLAP) 138
roll-up 267
roll-up operation 32, 38
roll-up relation 36

S
scientific approach 65
secondary event 9
self-describing 278
semistructured data 279
shared hierarchies 13
skills acquisition 73
slice 268
snowflake dimension 42
snowflake schema 42
software construction 125
SOLAP (see spatial OLAP) 308
source instability 91
spatial OLAP (SOLAP) 308

Standard Generalized Markup Language
280

star dimension 42, 44
star join 137
star query optimization 151
star query processing 143
star schema 3, 31, 42
star transformation 144
stock measures 17
strict time constraints 91
structural heterogeneity 32
structurally heterogeneous 29
structurally heterogeneous OLAP data 28
structurally homogeneous 29
summarizability 39, 40, 54
system architecture 234

T
temporal data warehouses 284
temporal graphical model (TGM) 281
temporal hierarchy 13
temporal operations 310
temporal semistructured data model 277
TGM (see temporal graphical model) 281
thematic operations 310
time complexity 172
timeliness 69
transaction model 235
transaction routing 240
transportation 119
two-phase-commit (2PC) 235

U
unbalanced (or recursive) hierarchy 15
unbalanced dimension 34, 47
unit measures 17

V
variables 9
version freshness 244
volatility 70

W
WAH code (see word-aligned-hybrid code)

166

332 Index

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

WBP (see workload-based partitioning)
215

WBP+JB (see WBP with bitmap join
indexes) 216

word-aligned hybrid (WAH) code 166
workflow management 99
workload-based partitioning (WBP) 215

X
XML (see eXtensible Markup Language)

278
XML data warehouse 278
XML Web data warehouses 278

Information
Technology Research

at the Click of
aMouse!

InfoSci-Online
Instant access to thousands of information technology
book chapters, journal articles, teaching cases, and confer-
ence proceedings

Multiple search functions

Full-text entries and complete citation information

Upgrade to InfoSci-Online Premium and add thousands of
authoritative entries from Idea Group Reference’s hand-
books of research and encyclopedias!

IGI Full-Text Online Journal Collection

Instant access to thousands of scholarly journal articles

Full-text entries and complete citation information

IGI Teaching Case Collection

Instant access to hundreds of comprehensive teaching cases

Password-protected access to case instructor files

IGI E-Access

Online, full-text access to IGI individual journals,
encyclopedias, or handbooks of research

Additional E-Resources

E-Books

Individual Electronic Journal Articles

Individual Electronic Teaching Cases

IGI Electronic
Resources
have flexible
pricing to
help meet the
needs of any
institution.

Sign Up for a
Free Trial of
IGI Databases!

Looking for a way to make information science and technology research easy?
Idea Group Inc. Electronic Resources are designed to keep your institution
up-to-date on the latest information science technology trends and research.

�

�
�
�

�
�

�
�

�

�
�
�

www.igi-online.com

Introducing
Introducing

The new IGI Teaching Case Collection is a full-text database contain-
ing hundreds of teaching cases related to the fields of information science,
technology, and management.

Key Features
• Project background

information
• Searches by keywords and

categories
• Abstracts and citation

information
• Full-text copies available for

each case
• All cases are available in PDF

format with instructor files
• Cases are written by IT

educators, researchers, and
professionals worldwide

The Benefits of the IGI Teaching Case Collection
• Frequent updates as new cases are available
• Instant access to all full-text articles saves research time
• No longer necessary to purchase individual cases
• Password-protected case instructor files included in the database

A Product Of

www.igi-online.com
For More Information Visit

www.igi-online.com

IGI Teaching Case Collection

Recommend to your librarian today!

View each case in full-text, PDF form.
Hundreds of cases provide a real-world
edge in information technology classes or
research!

